These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 14740738)
21. Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Li Z; Sahle-Demessie E; Hassan AA; Sorial GA Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395 [TBL] [Abstract][Full Text] [Related]
22. Development of a trajectory model for predicting attachment of submicrometer particles in porous media: stabilized NZVI as a case study. Wei YT; Wu SC Environ Sci Technol; 2010 Dec; 44(23):8996-9002. PubMed ID: 21067208 [TBL] [Abstract][Full Text] [Related]
23. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale. Seetha N; Raoof A; Mohan Kumar MS; Majid Hassanizadeh S J Contam Hydrol; 2017 May; 200():1-14. PubMed ID: 28366612 [TBL] [Abstract][Full Text] [Related]
24. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
25. Observed and simulated fluid drag effects on colloid deposition in the presence of an energy barrier in an impinging jet system. Johnson WP; Tong M Environ Sci Technol; 2006 Aug; 40(16):5015-21. PubMed ID: 16955901 [TBL] [Abstract][Full Text] [Related]
26. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media. Bradford SA; Torkzaban S Langmuir; 2015 Nov; 31(44):12096-105. PubMed ID: 26484563 [TBL] [Abstract][Full Text] [Related]
27. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Torkzaban S; Bradford SA; Walker SL Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511 [TBL] [Abstract][Full Text] [Related]
28. Correlation Equation for Predicting the Single-Collector Contact Efficiency of Colloids in a Horizontal Flow. Li J; Xie X; Ghoshal S Langmuir; 2015 Jul; 31(26):7210-9. PubMed ID: 26057080 [TBL] [Abstract][Full Text] [Related]
29. Critical role of surface roughness on colloid retention and release in porous media. Torkzaban S; Bradford SA Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805 [TBL] [Abstract][Full Text] [Related]
30. Role of nonspherical DLVO and capillary forces in the transport of 2D delaminated Ti Zhou D; Sun T; Huang Y; Chen X; Shang J Environ Res; 2021 Sep; 200():111451. PubMed ID: 34102160 [TBL] [Abstract][Full Text] [Related]
31. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review. Babakhani P; Bridge J; Doong RA; Phenrat T Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812 [TBL] [Abstract][Full Text] [Related]
32. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions. Park Y; Atwill ER; Hou L; Packman AI; Harter T Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686 [TBL] [Abstract][Full Text] [Related]
33. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions. Jin C; Ren CL; Emelko MB Environ Sci Technol; 2016 Apr; 50(8):4401-12. PubMed ID: 27007293 [TBL] [Abstract][Full Text] [Related]
34. Spontaneous Detachment of Colloids from Primary Energy Minima by Brownian Diffusion. Wang Z; Jin Y; Shen C; Li T; Huang Y; Li B PLoS One; 2016; 11(1):e0147368. PubMed ID: 26784446 [TBL] [Abstract][Full Text] [Related]
35. Effect of particle shape on colloid retention and release in saturated porous media. Liu Q; Lazouskaya V; He Q; Jin Y J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823 [TBL] [Abstract][Full Text] [Related]
36. Altered transport of lindane caused by the retention of natural particles in saturated porous media. Ngueleu SK; Grathwohl P; Cirpka OA J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485 [TBL] [Abstract][Full Text] [Related]
37. Quantification of colloid retention and release by straining and energy minima in variably saturated porous media. Sang W; Morales VL; Zhang W; Stoof CR; Gao B; Schatz AL; Zhang Y; Steenhuis TS Environ Sci Technol; 2013 Aug; 47(15):8256-64. PubMed ID: 23805840 [TBL] [Abstract][Full Text] [Related]
38. A stochastic model for colloid transport and deposition. Bradford SA; Toride N J Environ Qual; 2007; 36(5):1346-56. PubMed ID: 17636297 [TBL] [Abstract][Full Text] [Related]
39. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Torkzaban S; Kim HN; Simunek J; Bradford SA Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144 [TBL] [Abstract][Full Text] [Related]