These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 14740742)
1. Methods for estimating adsorbed uranium(VI) and distribution coefficients of contaminated sediments. Kohler M; Curtis GP; Meece DE; Davis JA Environ Sci Technol; 2004 Jan; 38(1):240-7. PubMed ID: 14740742 [TBL] [Abstract][Full Text] [Related]
2. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado. Hyun SP; Fox PM; Davis JA; Campbell KM; Hayes KF; Long PE Environ Sci Technol; 2009 Dec; 43(24):9368-73. PubMed ID: 20000531 [TBL] [Abstract][Full Text] [Related]
3. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system. Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489 [TBL] [Abstract][Full Text] [Related]
4. The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments. Crawford SE; Lofts S; Liber K Environ Pollut; 2017 Jan; 220(Pt B):873-881. PubMed ID: 27825841 [TBL] [Abstract][Full Text] [Related]
5. U(VI) adsorption on aquifer sediments at the Hanford Site. Um W; Serne RJ; Brown CF; Last GV J Contam Hydrol; 2007 Aug; 93(1-4):255-69. PubMed ID: 17499879 [TBL] [Abstract][Full Text] [Related]
6. No measurable changes in (238)U/(235)U due to desorption-adsorption of U(VI) from groundwater at the Rifle, Colorado, integrated field research challenge site. Shiel AE; Laubach PG; Johnson TM; Lundstrom CC; Long PE; Williams KH Environ Sci Technol; 2013 Mar; 47(6):2535-41. PubMed ID: 23379698 [TBL] [Abstract][Full Text] [Related]
7. Assessment of surface area normalisation for interpreting distribution coefficients (K(d)) for uranium sorption. Payne TE; Brendler V; Comarmond MJ; Nebelung C J Environ Radioact; 2011 Oct; 102(10):888-95. PubMed ID: 20452709 [TBL] [Abstract][Full Text] [Related]
8. Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction. N'Guessan AL; Vrionis HA; Resch CT; Long PE; Lovley DR Environ Sci Technol; 2008 Apr; 42(8):2999-3004. PubMed ID: 18497157 [TBL] [Abstract][Full Text] [Related]
9. Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Qafoku NP; Zachara JM; Liu C; Gassman PL; Qafoku OS; Smith SC Environ Sci Technol; 2005 May; 39(9):3157-65. PubMed ID: 15926566 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Electrostatic and Non-Electrostatic Models for U(VI) Sorption on Aquifer Sediments. Arora B; Davis JA; Spycher NF; Dong W; Wainwright HM Ground Water; 2018 Jan; 56(1):73-86. PubMed ID: 28683163 [TBL] [Abstract][Full Text] [Related]
11. Phosphate-Induced Immobilization of Uranium in Hanford Sediments. Pan Z; Giammar DE; Mehta V; Troyer LD; Catalano JG; Wang Z Environ Sci Technol; 2016 Dec; 50(24):13486-13494. PubMed ID: 27993066 [TBL] [Abstract][Full Text] [Related]
12. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site. Dong W; Tokunaga TK; Davis JA; Wan J Environ Sci Technol; 2012 Feb; 46(3):1565-71. PubMed ID: 22191402 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation. Liu C; Shi Z; Zachara JM Environ Sci Technol; 2009 Sep; 43(17):6560-6. PubMed ID: 19764217 [TBL] [Abstract][Full Text] [Related]
14. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability. Wu WM; Carley J; Gentry T; Ginder-Vogel MA; Fienen M; Mehlhorn T; Yan H; Caroll S; Pace MN; Nyman J; Luo J; Gentile ME; Fields MW; Hickey RF; Gu B; Watson D; Cirpka OA; Zhou J; Fendorf S; Kitanidis PK; Jardine PM; Criddle CS Environ Sci Technol; 2006 Jun; 40(12):3986-95. PubMed ID: 16830572 [TBL] [Abstract][Full Text] [Related]
15. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840 [TBL] [Abstract][Full Text] [Related]
16. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling. Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874 [TBL] [Abstract][Full Text] [Related]
17. Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization. Mehta VS; Maillot F; Wang Z; Catalano JG; Giammar DE Water Res; 2015 Feb; 69():307-317. PubMed ID: 25497429 [TBL] [Abstract][Full Text] [Related]
18. Uranium Isotopic Fractionation Induced by U(VI) Adsorption onto Common Aquifer Minerals. Jemison NE; Johnson TM; Shiel AE; Lundstrom CC Environ Sci Technol; 2016 Nov; 50(22):12232-12240. PubMed ID: 27758097 [TBL] [Abstract][Full Text] [Related]
19. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site. Li D; Seaman JC; Chang HS; Jaffe PR; Koster van Groos P; Jiang DT; Chen N; Lin J; Arthur Z; Pan Y; Scheckel KG; Newville M; Lanzirotti A; Kaplan DI J Environ Radioact; 2014 May; 131():40-6. PubMed ID: 24238918 [TBL] [Abstract][Full Text] [Related]
20. Removal of uranium(VI) from contaminated sediments by surfactants. Gadelle F; Wan J; Tokunaga TK J Environ Qual; 2001; 30(2):470-8. PubMed ID: 11285907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]