These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 14740747)

  • 21. Isotope microscopy visualization of the adsorption profile of 2-methylisoborneol and geosmin in powdered activated carbon.
    Matsui Y; Sakamoto A; Nakao S; Taniguchi T; Matsushita T; Shirasaki N; Sakamoto N; Yurimoto H
    Environ Sci Technol; 2014 Sep; 48(18):10897-903. PubMed ID: 25162630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geosmin and 2-methylisoborneol removal using superfine powdered activated carbon: shell adsorption and branched-pore kinetic model analysis and optimal particle size.
    Matsui Y; Nakao S; Taniguchi T; Matsushita T
    Water Res; 2013 May; 47(8):2873-80. PubMed ID: 23528781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-component competitive adsorption model for fixed-bed and moving-bed granular activated carbon adsorbers. Part II. Model parameterization and verification.
    Schideman LC; Mariñas BJ; Snoeyink VL; Campos C
    Environ Sci Technol; 2006 Nov; 40(21):6812-7. PubMed ID: 17144315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling trace organic contaminant adsorption capacity by granular activated carbon.
    Corwin CJ; Summers RS
    Environ Sci Technol; 2010 Jul; 44(14):5403-8. PubMed ID: 20560652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interference of iron as a coagulant on MIB removal by powdered activated carbon adsorption for low turbidity waters.
    Seckler FF; Margarida M; Rosemeire AL
    J Environ Sci (China); 2013 Aug; 25(8):1575-82. PubMed ID: 24520695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The regeneration of field-spent granular-activated carbons.
    Miguel GS; Lambert SD; Graham NJ
    Water Res; 2001 Aug; 35(11):2740-8. PubMed ID: 11456174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorptive ozonation of 2-methylisoborneol in natural water with preventing bromate formation.
    Sagehashi M; Shiraishi K; Fujita H; Fujii T; Sakoda A
    Water Res; 2005 Oct; 39(16):3900-8. PubMed ID: 16131464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro-milling of spent granular activated carbon for its possible reuse as an adsorbent: Remaining capacity and characteristics.
    Pan L; Takagi Y; Matsui Y; Matsushita T; Shirasaki N
    Water Res; 2017 May; 114():50-58. PubMed ID: 28226249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative study on the removal technologies of 2-methylisoborneol (MIB) in drinking water.
    Liang CZ; Wang DS; Ge XP; Yang M; Sun W
    J Environ Sci (China); 2006; 18(1):47-51. PubMed ID: 20050547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of carbon molecular sieves by carbon deposition from methane.
    Zhang T; Walawender WP; Fan LT
    Bioresour Technol; 2005 Nov; 96(17):1929-35. PubMed ID: 16084373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Removal of 2-methylisoborneol in drinking water by ozonation].
    Ma J; Li XY; Chen ZL; Qi F
    Huan Jing Ke Xue; 2006 Dec; 27(12):2483-7. PubMed ID: 17304845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model studies on granular activated carbon adsorption in fixed bed filtration.
    Jusoh AB; Noor MJ; Plow SB
    Water Sci Technol; 2002; 46(9):127-35. PubMed ID: 12448461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of THM precursors by GAC: Ankara case study.
    Capar G; Yetiş U
    Water Res; 2002 Mar; 36(5):1379-84. PubMed ID: 11902794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of mesopores in MTBE removal with granular activated carbon.
    Redding AM; Cannon FS
    Water Res; 2014 Jun; 56():214-24. PubMed ID: 24681276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column.
    Darweesh TM; Ahmed MJ
    Ecotoxicol Environ Saf; 2017 Apr; 138():139-145. PubMed ID: 28040619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of a bacterium capable of removing taste- and odor-causing 2-methylisoborneol from water.
    Lauderdale CV; Aldrich HC; Lindner AS
    Water Res; 2004 Nov; 38(19):4135-42. PubMed ID: 15491661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.
    Matsui Y; Nakao S; Sakamoto A; Taniguchi T; Pan L; Matsushita T; Shirasaki N
    Water Res; 2015 Nov; 85():95-102. PubMed ID: 26302219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment of taste and odor material by oxidation and adsorption.
    Jung SW; Baek KH; Yu MJ
    Water Sci Technol; 2004; 49(9):289-95. PubMed ID: 15237637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of a three-component competitive adsorption model to evaluate and optimize granular activated carbon systems.
    Schideman LC; Snoeyink VL; Mariñas BJ; Ding L; Campos C
    Water Res; 2007 Aug; 41(15):3289-98. PubMed ID: 17572469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.
    Fu H; Yang L; Wan Y; Xu Z; Zhu D
    J Environ Qual; 2011; 40(6):1886-94. PubMed ID: 22031572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.