These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 14740748)
21. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. Qiao S; Sun DD; Tay JH; Easton C Water Sci Technol; 2003; 47(1):211-7. PubMed ID: 12578197 [TBL] [Abstract][Full Text] [Related]
22. Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide. Hager S; Bauer R; Kudielka G Chemosphere; 2000 Oct; 41(8):1219-25. PubMed ID: 10901250 [TBL] [Abstract][Full Text] [Related]
23. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. Chen Y; Crittenden JC; Hackney S; Sutter L; Hand DW Environ Sci Technol; 2005 Mar; 39(5):1201-8. PubMed ID: 15787357 [TBL] [Abstract][Full Text] [Related]
24. Deactivation of titanium dioxide photocatalyst by oxidation of polydimethylsiloxane and silicon sealant off-gas in a recirculating batch reactor. Chemweno MK; Cernohlavek LG; Jacoby WA J Air Waste Manag Assoc; 2008 Jan; 58(1):12-8. PubMed ID: 18236790 [TBL] [Abstract][Full Text] [Related]
25. TiO2-UV photocatalytic oxidation of Reactive Yellow 14: effect of operational parameters. Muruganandham M; Swaminathan M J Hazard Mater; 2006 Jul; 135(1-3):78-86. PubMed ID: 16386844 [TBL] [Abstract][Full Text] [Related]
26. Selective oxidation of alcohols in aqueous suspensions of rhodium ion-modified TiO2 photocatalysts under irradiation of visible light. Kitano S; Tanaka A; Hashimoto K; Kominami H Phys Chem Chem Phys; 2014 Jun; 16(24):12554-9. PubMed ID: 24832087 [TBL] [Abstract][Full Text] [Related]
27. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. Yang S; Zhu W; Wang J; Chen Z J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483 [TBL] [Abstract][Full Text] [Related]
28. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide. Liu H; Lian Z; Ye X; Shangguan W Chemosphere; 2005 Jul; 60(5):630-5. PubMed ID: 15963801 [TBL] [Abstract][Full Text] [Related]
29. Solar oxidation of toluene over Co doped nano-catalyst. Almomani F; Bhosale R; Shawaqfah M Chemosphere; 2020 Sep; 255():126878. PubMed ID: 32387727 [TBL] [Abstract][Full Text] [Related]
30. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide. Hager S; Bauer R Chemosphere; 1999 Mar; 38(7):1549-59. PubMed ID: 10070735 [TBL] [Abstract][Full Text] [Related]
31. Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources. Jeong J; Sekiguchi K; Sakamoto K Chemosphere; 2004 Nov; 57(7):663-71. PubMed ID: 15488929 [TBL] [Abstract][Full Text] [Related]
32. [Photocatalytic oxidation of airborne VOCs on TiO2]. Wu Y; Chen L Wei Sheng Yan Jiu; 2002 Oct; 31(5):384-5. PubMed ID: 12572365 [TBL] [Abstract][Full Text] [Related]
33. Photooxidation of a mustard gas simulant over TiO2-SiO2 mixed-oxide photocatalyst: site poisoning by oxidation products and reactivation. Panayotov D; Kondratyuk P; Yates JT Langmuir; 2004 Apr; 20(9):3674-8. PubMed ID: 15875398 [TBL] [Abstract][Full Text] [Related]
34. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Jo WK; Park KH Chemosphere; 2004 Nov; 57(7):555-65. PubMed ID: 15488917 [TBL] [Abstract][Full Text] [Related]
35. Photocatalytic destruction of volatile aromatic compounds by platinized titanium dioxide in relation to the relative effect of the number of methyl groups on the benzene ring. Zhang J; Vikrant K; Kim KH; Dong F Sci Total Environ; 2022 May; 822():153605. PubMed ID: 35114233 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Sakthivel S; Shankar MV; Palanichamy M; Arabindoo B; Bahnemann DW; Murugesan V Water Res; 2004 Jul; 38(13):3001-8. PubMed ID: 15261537 [TBL] [Abstract][Full Text] [Related]
37. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds. Weon S; Choi W Environ Sci Technol; 2016 Mar; 50(5):2556-63. PubMed ID: 26854616 [TBL] [Abstract][Full Text] [Related]
38. Performance and Mechanism of Photocatalytic Toluene Degradation and Catalyst Regeneration by Thermal/UV Treatment. Chen Z; Peng Y; Chen J; Wang C; Yin H; Wang H; You C; Li J Environ Sci Technol; 2020 Nov; 54(22):14465-14473. PubMed ID: 33119280 [TBL] [Abstract][Full Text] [Related]
39. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air. Chen K; Zhu L; Yang K J Environ Sci (China); 2015 Jun; 32():189-95. PubMed ID: 26040745 [TBL] [Abstract][Full Text] [Related]
40. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Akpan UG; Hameed BH J Hazard Mater; 2009 Oct; 170(2-3):520-9. PubMed ID: 19505759 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]