BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 14741212)

  • 1. Cystatin forms a tetramer through structural rearrangement of domain-swapped dimers prior to amyloidogenesis.
    Sanders A; Jeremy Craven C; Higgins LD; Giannini S; Conroy MJ; Hounslow AM; Waltho JP; Staniforth RA
    J Mol Biol; 2004 Feb; 336(1):165-78. PubMed ID: 14741212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily.
    Staniforth RA; Giannini S; Higgins LD; Conroy MJ; Hounslow AM; Jerala R; Craven CJ; Waltho JP
    EMBO J; 2001 Sep; 20(17):4774-81. PubMed ID: 11532941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping.
    Janowski R; Kozak M; Jankowska E; Grzonka Z; Grubb A; Abrahamson M; Jaskolski M
    Nat Struct Biol; 2001 Apr; 8(4):316-20. PubMed ID: 11276250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain swapping in N-truncated human cystatin C.
    Janowski R; Abrahamson M; Grubb A; Jaskolski M
    J Mol Biol; 2004 Jul; 341(1):151-60. PubMed ID: 15312769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D domain swapping, protein oligomerization, and amyloid formation.
    Jaskólski M
    Acta Biochim Pol; 2001; 48(4):807-27. PubMed ID: 11995994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR structural studies of human cystatin C dimers and monomers.
    Ekiel I; Abrahamson M; Fulton DB; Lindahl P; Storer AC; Levadoux W; Lafrance M; Labelle S; Pomerleau Y; Groleau D; LeSauteur L; Gehring K
    J Mol Biol; 1997 Aug; 271(2):266-77. PubMed ID: 9268658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevention of amyloid fibril formation of amyloidogenic chicken cystatin by site-specific glycosylation in yeast.
    He J; Song Y; Ueyama N; Saito A; Azakami H; Kato A
    Protein Sci; 2006 Feb; 15(2):213-22. PubMed ID: 16434741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of recombinant amyloidogenic chicken cystatin mutant I66Q expressed in yeast.
    He J; Song Y; Ueyama N; Harada A; Azakami H; Kato A
    J Biochem; 2005 Apr; 137(4):477-85. PubMed ID: 15858171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping.
    Wahlbom M; Wang X; Lindström V; Carlemalm E; Jaskolski M; Grubb A
    J Biol Chem; 2007 Jun; 282(25):18318-18326. PubMed ID: 17470433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D domain-swapped human cystatin C with amyloidlike intermolecular beta-sheets.
    Janowski R; Kozak M; Abrahamson M; Grubb A; Jaskolski M
    Proteins; 2005 Nov; 61(3):570-8. PubMed ID: 16170782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid fibril formation by human stefins: Structure, mechanism & putative functions.
    Zerovnik E; Staniforth RA; Turk D
    Biochimie; 2010 Nov; 92(11):1597-607. PubMed ID: 20685229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of proline isomerization in stefin B tetramer formation.
    Jenko Kokalj S; Guncar G; Stern I; Morgan G; Rabzelj S; Kenig M; Staniforth RA; Waltho JP; Zerovnik E; Turk D
    J Mol Biol; 2007 Mar; 366(5):1569-79. PubMed ID: 17217964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accessing the global minimum conformation of stefin A dimer by annealing under partially denaturing conditions.
    Jerala R; Zerovnik E
    J Mol Biol; 1999 Sep; 291(5):1079-89. PubMed ID: 10518944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of backbone dynamics of monomeric and domain-swapped stefin A.
    Japelj B; Waltho JP; Jerala R
    Proteins; 2004 Feb; 54(3):500-12. PubMed ID: 14747998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limited Proteolysis Reveals That Amyloids from the 3D Domain-Swapping Cystatin B Have a Non-Native β-Sheet Topology.
    Davis PJ; Holmes D; Waltho JP; Staniforth RA
    J Mol Biol; 2015 Jul; 427(15):2418-2434. PubMed ID: 26004542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct properties of wild-type and the amyloidogenic human cystatin C variant of hereditary cerebral hemorrhage with amyloidosis, Icelandic type.
    Calero M; Pawlik M; Soto C; Castaño EM; Sigurdsson EM; Kumar A; Gallo G; Frangione B; Levy E
    J Neurochem; 2001 Apr; 77(2):628-37. PubMed ID: 11299325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appendant structure plays an important role in amyloidogenic cystatin dimerization prior to domain swapping.
    Yu Y; Liu X; He J; Zhang M; Li H; Wei D; Song Y
    J Biomol Struct Dyn; 2012; 30(1):102-12. PubMed ID: 22571436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hinge-loop mutation can be used to control 3D domain swapping and amyloidogenesis of human cystatin C.
    Orlikowska M; Jankowska E; Kołodziejczyk R; Jaskólski M; Szymańska A
    J Struct Biol; 2011 Feb; 173(2):406-13. PubMed ID: 21074623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (-)-epigallocatechin-3-gallate inhibits fibrillogenesis of chicken cystatin.
    Wang N; He J; Chang AK; Wang Y; Xu L; Chong X; Lu X; Sun Y; Xia X; Li H; Zhang B; Song Y; Kato A; Jones GW
    J Agric Food Chem; 2015 Feb; 63(5):1347-51. PubMed ID: 25620201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The GB1 amyloid fibril: recruitment of the peripheral beta-strands of the domain swapped dimer into the polymeric interface.
    Louis JM; Byeon IJ; Baxa U; Gronenborn AM
    J Mol Biol; 2005 May; 348(3):687-98. PubMed ID: 15826664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.