These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1474123)

  • 61. Use of binary and ternary mobile phases in reversed-phase high performance liquid chromatographic separation of chiral compounds.
    Gołkiewicz W; Błazewicz A; Matosiuk D
    J Sep Sci; 2004 Mar; 27(4):304-10. PubMed ID: 15334918
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Separation of norephedrine enantiomers by high performance liquid chromatography (HPLC) with urea derivative as chiral stationary phase].
    Wang Z; Yun Z
    Se Pu; 1998 May; 16(3):265-7. PubMed ID: 11327009
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Determination of isofezolac in biological fluids by reversed-phase liquid column chromatography.
    Bannier A; Brazier JL
    J Chromatogr; 1980 Jun; 182(3-4):369-77. PubMed ID: 7391179
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography.
    Aschi M; D'Archivio AA; Mazzeo P; Pierabella M; Ruggieri F
    Anal Chim Acta; 2008 Jun; 616(2):123-37. PubMed ID: 18482595
    [TBL] [Abstract][Full Text] [Related]  

  • 65. LC-MS compatible HPLC separation for xenobiotics and their phase I and phase II metabolites: simultaneous anion exchange and reversed-phase chromatography.
    Johnston JJ; Draper WM; Stephens RD
    J Chromatogr Sci; 1991 Dec; 29(12):511-6. PubMed ID: 1761635
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mobile phase pH and organic modifier in reversed-phase LC-ESI-MS bioanalytical methods: assessment of sensitivity, chromatography and correlation of retention time with in silico logD predictions.
    Silvester S
    Bioanalysis; 2013 Nov; 5(22):2753-70. PubMed ID: 24256357
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oxidation of methionine residues in coagulation factor VIIa.
    Kornfelt T; Persson E; Palm L
    Arch Biochem Biophys; 1999 Mar; 363(1):43-54. PubMed ID: 10079116
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Retention of ionisable compounds on high-performance liquid chromatography XVI. Estimation of retention with acetonitrile/water mobile phases from aqueous buffer pH and analyte pKa.
    Subirats X; Bosch E; Rosés M
    J Chromatogr A; 2006 Jul; 1121(2):170-7. PubMed ID: 16753172
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analysis of selected ionic liquid cations by ion exchange chromatography and reversed-phase high performance liquid chromatography.
    Stepnowski P; Mrozik W
    J Sep Sci; 2005 Feb; 28(2):149-54. PubMed ID: 15754822
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of basic compounds at high pH values by reversed-phase liquid chromatography.
    Stella C; Rudaz S; Mottaz M; Carrupt PA; Veuthey JL
    J Sep Sci; 2004 Mar; 27(4):284-92. PubMed ID: 15334915
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reversed phase HPLC of Met58 oxidized rhIL-11: oxidation enhanced by plastic tubes.
    Yokota H; Saito H; Masuoka K; Kaniwa H; Shibanuma T
    J Pharm Biomed Anal; 2000 Dec; 24(2):317-24. PubMed ID: 11130210
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanism of Pyrazine Formation Intervened by Oxidized Methionines during Thermal Degradation of the Methionine-Glucose Amadori Compound.
    Deng S; Zhai Y; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Nov; 70(45):14457-14467. PubMed ID: 36342227
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Application of high-performance hydrophobic-interaction chromatography to the characterization of recombinant DNA-derived human growth hormone.
    Wu SL; Hancock WS; Pavlu B; Gellerfors P
    J Chromatogr; 1990 Feb; 500():595-606. PubMed ID: 2329152
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Analysis of N
    Varkhede N; Björn-Hendrik P; Moulder KR; Gao P; Schöneich C; Forrest ML
    Anal Biochem; 2021 Dec; 634():114425. PubMed ID: 34678250
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inactivation of human immunodeficiency virus during human growth hormone production.
    Dormont D; Vaslin B; Dubeaux D; Boussin F; Maillard F; Deslys JP
    Arch Virol; 1988; 100(1-2):135-8. PubMed ID: 3390001
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reversed-phase high-performance liquid chromatography of human growth hormone.
    Welinder BS; Sørensen HH; Hansen B
    J Chromatogr; 1987 Jul; 398():309-16. PubMed ID: 3654843
    [No Abstract]   [Full Text] [Related]  

  • 77. A practical approach to high performance capillary electrophoresis with biosynthetic human growth hormone as a model protein.
    Vinther A; Søeberg H; Sørensen HH; Jespersen AM
    Talanta; 1991 Dec; 38(12):1369-79. PubMed ID: 18965311
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of freezing on aggregation of human growth hormone.
    Eckhardt BM; Oeswein JQ; Bewley TA
    Pharm Res; 1991 Nov; 8(11):1360-4. PubMed ID: 1798670
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of hydrophilic cyclodextrins on aggregation of recombinant human growth hormone.
    Tavornvipas S; Tajiri S; Hirayama F; Arima H; Uekama K
    Pharm Res; 2004 Dec; 21(12):2369-76. PubMed ID: 15648271
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The stabilization and encapsulation of human growth hormone into biodegradable microspheres.
    Johnson OL; Jaworowicz W; Cleland JL; Bailey L; Charnis M; Duenas E; Wu C; Shepard D; Magil S; Last T; Jones AJ; Putney SD
    Pharm Res; 1997 Jun; 14(6):730-5. PubMed ID: 9210189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.