BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 14741591)

  • 1. Preparation and physicochemical properties of compression-molded keratin films.
    Katoh K; Shibayama M; Tanabe T; Yamauchi K
    Biomaterials; 2004 May; 25(12):2265-72. PubMed ID: 14741591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity.
    Katoh K; Tanabe T; Yamauchi K
    Biomaterials; 2004 Aug; 25(18):4255-62. PubMed ID: 15046915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of keratin-chitosan composite film.
    Tanabe T; Okitsu N; Tachibana A; Yamauchi K
    Biomaterials; 2002 Feb; 23(3):817-25. PubMed ID: 11771701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel.
    Mori H; Hara M
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():19-25. PubMed ID: 30033245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation.
    Sando L; Kim M; Colgrave ML; Ramshaw JA; Werkmeister JA; Elvin CM
    J Biomed Mater Res A; 2010 Dec; 95(3):901-11. PubMed ID: 20845488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.
    Esparza Y; Bandara N; Ullah A; Wu J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():446-453. PubMed ID: 29853111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability.
    Nakata R; Osumi Y; Miyagawa S; Tachibana A; Tanabe T
    J Biosci Bioeng; 2015 Jul; 120(1):111-6. PubMed ID: 25561327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wool keratin: a novel building block for layer-by-layer self-assembly.
    Yang X; Zhang H; Yuan X; Cui S
    J Colloid Interface Sci; 2009 Aug; 336(2):756-60. PubMed ID: 19447401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials from wool wastes: characterization of cortical cells/chitosan composite.
    Fan J; Yu WD
    Waste Manag Res; 2010 Jan; 28(1):44-50. PubMed ID: 19767325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis.
    Ozaki Y; Takagi Y; Mori H; Hara M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():146-54. PubMed ID: 25063104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivation of fibroblast cells on keratin-coated substrata.
    Yamauchi K; Maniwa M; Mori T
    J Biomater Sci Polym Ed; 1998; 9(3):259-70. PubMed ID: 9556761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions.
    Cheng M; Deng J; Yang F; Gong Y; Zhao N; Zhang X
    Biomaterials; 2003 Aug; 24(17):2871-80. PubMed ID: 12742725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the conversion of wool keratin by steam explosion.
    Tonin C; Zoccola M; Aluigi A; Varesano A; Montarsolo A; Vineis C; Zimbardi F
    Biomacromolecules; 2006 Dec; 7(12):3499-504. PubMed ID: 17154480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submicron amino acid particles reinforced 100% keratin biomedical films with enhanced wet properties via interfacial strengthening.
    Mi X; Xu H; Yang Y
    Colloids Surf B Biointerfaces; 2019 May; 177():33-40. PubMed ID: 30708309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keratins extracted from Merino wool and Brown Alpaca fibres: thermal, mechanical and biological properties of PLLA based biocomposites.
    Fortunati E; Aluigi A; Armentano I; Morena F; Emiliani C; Martino S; Santulli C; Torre L; Kenny JM; Puglia D
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():394-406. PubMed ID: 25492212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of chitosan-polycaprolactone blends for tissue engineering applications.
    Sarasam A; Madihally SV
    Biomaterials; 2005 Sep; 26(27):5500-8. PubMed ID: 15860206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of hair keratin/gelatin blend films.
    Prasong S; Wasan T
    Pak J Biol Sci; 2011 Mar; 14(5):351-6. PubMed ID: 21874827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering.
    Kakkar P; Verma S; Manjubala I; Madhan B
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():343-7. PubMed ID: 25491838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.