These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14741665)

  • 1. A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages.
    Xia Y; Hu Q; Aziz A; Nowinski WL
    Neuroimage; 2004 Jan; 21(1):269-82. PubMed ID: 14741665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowledge-driven automated extraction of the human cerebral ventricular system from MR images.
    Xia Y; Hu Q; Aziz A; Nowinski WL
    Inf Process Med Imaging; 2003 Jul; 18():270-81. PubMed ID: 15344464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of the human brain ventricles from MR images by knowledge-based region growing and trimming.
    Liu J; Huang S; Nowinski WL
    Neuroinformatics; 2009 Jun; 7(2):131-46. PubMed ID: 19449142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of the ventricular system from MR images of the human brain.
    Schnack HG; Hulshoff Pol HE; Baaré WF; Viergever MA; Kahn RS
    Neuroimage; 2001 Jul; 14(1 Pt 1):95-104. PubMed ID: 11525342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic identification of the reference system based on the fourth ventricular landmarks in T1-weighted MR images.
    Fu Y; Gao W; Chen X; Zhu M; Shen W; Wang S
    Acad Radiol; 2010 Jan; 17(1):67-74. PubMed ID: 19734061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of magnetic resonance images using a decision tree with spatial information.
    Chao WH; Chen YY; Lin SH; Shih YY; Tsang S
    Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid algorithm for robust and automatic extraction of the midsagittal plane of the human cerebrum from neuroimages based on local symmetry and outlier removal.
    Hu Q; Nowinski WL
    Neuroimage; 2003 Dec; 20(4):2153-65. PubMed ID: 14683719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of the caudate nucleus from human brain MR images.
    Xia Y; Bettinger K; Shen L; Reiss AL
    IEEE Trans Med Imaging; 2007 Apr; 26(4):509-17. PubMed ID: 17427738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A framework for quantification and visualization of segmentation accuracy and variability in 3D lateral ventricle ultrasound images of preterm neonates.
    Chen Y; Qiu W; Kishimoto J; Gao Y; Chan RH; de Ribaupierre S; Fenster A; Chiu B
    Med Phys; 2015 Nov; 42(11):6387-405. PubMed ID: 26520730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between intensity standardization and inhomogeneity correction in MR image processing.
    Madabhushi A; Udupa JK
    IEEE Trans Med Imaging; 2005 May; 24(5):561-76. PubMed ID: 15889544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI intensity inhomogeneity correction by combining intensity and spatial information.
    Vovk U; Pernus F; Likar B
    Phys Med Biol; 2004 Sep; 49(17):4119-33. PubMed ID: 15470927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic model-guided segmentation of the human brain ventricular system from CT images.
    Liu J; Huang S; Ihar V; Ambrosius W; Lee LC; Nowinski WL
    Acad Radiol; 2010 Jun; 17(6):718-26. PubMed ID: 20457415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and automatic localization of the anterior and posterior commissure point landmarks in MR volumetric neuroimages.
    Bhanu Prakash KN; Hu Q; Aziz A; Nowinski WL
    Acad Radiol; 2006 Jan; 13(1):36-54. PubMed ID: 16399031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fully automated algorithm under modified FCM framework for improved brain MR image segmentation.
    Sikka K; Sinha N; Singh PK; Mishra AK
    Magn Reson Imaging; 2009 Sep; 27(7):994-1004. PubMed ID: 19395212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI.
    Preboske GM; Gunter JL; Ward CP; Jack CR
    Neuroimage; 2006 May; 30(4):1196-202. PubMed ID: 16380273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.
    Collins DL; Neelin P; Peters TM; Evans AC
    J Comput Assist Tomogr; 1994; 18(2):192-205. PubMed ID: 8126267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D MR ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilatation (PHVD) using multi-phase geodesic level-sets.
    Qiu W; Yuan J; Rajchl M; Kishimoto J; Chen Y; de Ribaupierre S; Chiu B; Fenster A
    Neuroimage; 2015 Sep; 118():13-25. PubMed ID: 26070262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elimination of RF inhomogeneity effects in segmentation.
    Agus O; Ozkan M; Aydin K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2081-4. PubMed ID: 18002397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved algorithm for rotational motion artifact suppression in MRI.
    Weerasinghe C; Yan H
    IEEE Trans Med Imaging; 1998 Apr; 17(2):310-7. PubMed ID: 9688164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus.
    Quon JL; Han M; Kim LH; Koran ME; Chen LC; Lee EH; Wright J; Ramaswamy V; Lober RM; Taylor MD; Grant GA; Cheshier SH; Kestle JRW; Edwards MSB; Yeom KW
    J Neurosurg Pediatr; 2021 Feb; 27(2):131-138. PubMed ID: 33260138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.