These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 14741726)

  • 1. PC-aided assessment of the thermal performances of a MW applicator for oncological hyperthermia.
    Marini P; Guiot C; Baiotto B; Gabriele P
    Comput Biol Med; 2004 Jan; 34(1):3-13. PubMed ID: 14741726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slot-line applicator for microwave hyperthermia.
    Togni P; Drízd'al T; Vrba J; Vannucci L
    J Microw Power Electromagn Energy; 2009; 43(2):24-30. PubMed ID: 21384712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave applicator for hyperthermia treatment on in vivo melanoma model.
    Togni P; Vrba J; Vannucci L
    Med Biol Eng Comput; 2010 Mar; 48(3):285-92. PubMed ID: 20033789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia.
    Johnson JE; Neuman DG; Maccarini PF; Juang T; Stauffer PR; Turner P
    Int J Hyperthermia; 2006 Sep; 22(6):475-90. PubMed ID: 16971368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators. Finite-difference time-domain.
    Gentili GB; Leoncini M; Trembly BS; Schweizer SE
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):973-80. PubMed ID: 8582727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of a new microwave applicator for hyperthermia treatment of uterocervical cancer].
    Wang W; Ding R; Wang H; Li Y; Lin S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):175-7. PubMed ID: 11951512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators.
    Neuman DG; Stauffer PR; Jacobsen S; Rossetto F
    Int J Hyperthermia; 2002; 18(3):180-93. PubMed ID: 12028636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic temperature controller for multielement array hyperthermia systems.
    Johnson JE; Maccarini PF; Neuman D; Stauffer PR
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1006-15. PubMed ID: 16761827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the SAR-distribution of the Sigma-60 applicator for regional hyperthermia using a Schottky diode sheet.
    Van Rhoon GC; Van Der Heuvel DJ; Ameziane A; Rietveld PJ; Volenec K; Van Der Zee J
    Int J Hyperthermia; 2003; 19(6):642-54. PubMed ID: 14756453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved applicator-patient coupling in microwave-induced hyperthermia.
    Nussbaum GH; Goodman RA; Bruce AA
    Med Phys; 1983; 10(6):897-8. PubMed ID: 6656702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia.
    Hiraki Y; Nakajo M; Takeshita T; Churei H
    Int J Hyperthermia; 2000; 16(3):205-18. PubMed ID: 10830584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heating characteristics of the TRIPAS hyperthermia system for deep seated malignancy.
    Surowiec A; Bicher HI
    J Microw Power Electromagn Energy; 1995; 30(3):135-40. PubMed ID: 7472918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quality assurance guidelines for superficial hyperthermia clinical trials : II. Technical requirements for heating devices.
    Dobšíček Trefná H; Crezee J; Schmidt M; Marder D; Lamprecht U; Ehmann M; Nadobny J; Hartmann J; Lomax N; Abdel-Rahman S; Curto S; Bakker A; Hurwitz MD; Diederich CJ; Stauffer PR; Van Rhoon GC
    Strahlenther Onkol; 2017 May; 193(5):351-366. PubMed ID: 28251250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D temperature distribution in ultrasound hyperthermia with interstitial waveguide applicator.
    Jarosz BJ
    Ann N Y Acad Sci; 1998 Sep; 858():47-55. PubMed ID: 9917806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence.
    Arunachalam K; Maccarini PF; Craciunescu OI; Schlorff JL; Stauffer PR
    Phys Med Biol; 2010 Apr; 55(7):1949-69. PubMed ID: 20224154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.