BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1474198)

  • 1. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species.
    Shimamura S; Abe F; Ishibashi N; Miyakawa H; Yaeshima T; Araya T; Tomita M
    J Dairy Sci; 1992 Dec; 75(12):3296-306. PubMed ID: 1474198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic and biochemical responses of probiotic bacteria to oxygen.
    Talwalkar A; Kailasapathy K
    J Dairy Sci; 2003 Aug; 86(8):2537-46. PubMed ID: 12939077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen.
    Kawasaki S; Mimura T; Satoh T; Takeda K; Niimura Y
    Appl Environ Microbiol; 2006 Oct; 72(10):6854-8. PubMed ID: 16950914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between enzyme activities involved in oxygen metabolism and oxygen tolerance in black-pigmented Bacteroides.
    Amano A; Tamagawa H; Takagaki M; Murakami Y; Shizukuishi S; Tsunemitsu A
    J Dent Res; 1988 Sep; 67(9):1196-9. PubMed ID: 3166001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for NAD(P)(+) regeneration in Bifidobacterium longum.
    Yamazaki S; Kano K; Ikeda T; Isawa K; Kaneko T
    Biochim Biophys Acta; 1999 Aug; 1428(2-3):241-50. PubMed ID: 10434042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters.
    Quatravaux S; Remize F; Bryckaert E; Colavizza D; Guzzo J
    J Appl Microbiol; 2006 Oct; 101(4):903-12. PubMed ID: 16968302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria.
    Ward RE; Niñonuevo M; Mills DA; Lebrilla CB; German JB
    Mol Nutr Food Res; 2007 Nov; 51(11):1398-405. PubMed ID: 17966141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultracytochemical localization of NAD(P)H oxidase activity in the human placenta.
    Matsubara S; Tamada T
    Nihon Sanka Fujinka Gakkai Zasshi; 1991 Jan; 43(1):117-21. PubMed ID: 1847711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of oligosaccharides in yogurt containing bifidobacteria and yogurt cultures.
    Lamoureux L; Roy D; Gauthier SF
    J Dairy Sci; 2002 May; 85(5):1058-69. PubMed ID: 12086039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Amino-3-carboxy-1,4-naphthoquinone affects the end-product profile of bifidobacteria through the mediated oxidation of NAD(P)H.
    Yamazaki S; Kaneko T; Taketomo N; Kano K; Ikeda T
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):72-8. PubMed ID: 12073135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea.
    Yang X; Ma K
    Arch Microbiol; 2005 Aug; 183(5):331-7. PubMed ID: 15912375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen metabolism in plant/bacteria interactions: effect of DPI on the pseudo-NAD(P)H oxidase activity of peroxidase.
    Baker CJ; Deahl K; Domek J; Orlandi EW
    Biochem Biophys Res Commun; 1998 Nov; 252(2):461-4. PubMed ID: 9826552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance of Bifidobacterium human isolates to bile, acid and oxygen.
    Andriantsoanirina V; Allano S; Butel MJ; Aires J
    Anaerobe; 2013 Jun; 21():39-42. PubMed ID: 23598280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia.
    Rister M; Baehner RL
    J Clin Invest; 1976 Nov; 58(5):1174-84. PubMed ID: 825533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth characteristics of bifidobacteria in infant formulas.
    Dubey UK; Mistry VV
    J Dairy Sci; 1996 Jul; 79(7):1146-55. PubMed ID: 8872711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digoxigenin-labeled deoxyribonucleic acid probes for the enumeration of bifidobacteria in fecal samples.
    Kaneko T; Kurihara H
    J Dairy Sci; 1997 Jul; 80(7):1254-9. PubMed ID: 9241587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota.
    Pastell H; Westermann P; Meyer AS; Tuomainen P; Tenkanen M
    J Agric Food Chem; 2009 Sep; 57(18):8598-606. PubMed ID: 19694435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of bifidogenic factors on growth characteristics of bifidobacteria in infant formulas.
    Dubey UK; Mistry VV
    J Dairy Sci; 1996 Jul; 79(7):1156-63. PubMed ID: 8872712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes.
    Zhang F; Zhang H; Wang G; Xu L; Shen Z
    J Hazard Mater; 2009 Aug; 168(1):76-84. PubMed ID: 19261380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of β-glucans derived from different sources by bifidobacteria: evaluation of their bifidogenic effect.
    Zhao J; Cheung PC
    J Agric Food Chem; 2011 Jun; 59(11):5986-92. PubMed ID: 21568326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.