These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 14742877)

  • 1. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana.
    Carey CC; Strahle JT; Selinger DA; Chandler VL
    Plant Cell; 2004 Feb; 16(2):450-64. PubMed ID: 14742877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein.
    Walker AR; Davison PA; Bolognesi-Winfield AC; James CM; Srinivasan N; Blundell TL; Esch JJ; Marks MD; Gray JC
    Plant Cell; 1999 Jul; 11(7):1337-50. PubMed ID: 10402433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.
    Verweij W; Spelt CE; Bliek M; de Vries M; Wit N; Faraco M; Koes R; Quattrocchio FM
    Plant Cell; 2016 Mar; 28(3):786-803. PubMed ID: 26977085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A WD40-repeat gene from Malus x domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1.
    Brueggemann J; Weisshaar B; Sagasser M
    Plant Cell Rep; 2010 Mar; 29(3):285-94. PubMed ID: 20107808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene.
    Humphries JA; Walker AR; Timmis JN; Orford SJ
    Plant Mol Biol; 2005 Jan; 57(1):67-81. PubMed ID: 15821869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway.
    Selinger DA; Chandler VL
    Plant Cell; 1999 Jan; 11(1):5-14. PubMed ID: 9878628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development.
    Ben-Simhon Z; Judeinstein S; Nadler-Hassar T; Trainin T; Bar-Ya'akov I; Borochov-Neori H; Holland D
    Planta; 2011 Nov; 234(5):865-81. PubMed ID: 21643990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana.
    Shan X; Li Y; Yang S; Gao R; Zhou L; Bao T; Han T; Wang S; Gao X; Wang L
    Plant Physiol Biochem; 2019 Aug; 141():60-72. PubMed ID: 31128564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.
    Chen M; Zhang B; Li C; Kulaveerasingam H; Chew FT; Yu H
    Plant Physiol; 2015 Sep; 169(1):391-402. PubMed ID: 26152712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed.
    Nesi N; Jond C; Debeaujon I; Caboche M; Lepiniec L
    Plant Cell; 2001 Sep; 13(9):2099-114. PubMed ID: 11549766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes.
    Dong X; Braun EL; Grotewold E
    Plant Physiol; 2001 Sep; 127(1):46-57. PubMed ID: 11553733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the pr1 gene product completes the anthocyanin biosynthesis pathway of maize.
    Sharma M; Cortes-Cruz M; Ahern KR; McMullen M; Brutnell TP; Chopra S
    Genetics; 2011 May; 188(1):69-79. PubMed ID: 21385724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Transposon Mutagenesis of the Maize (Zea mays) Pho1 Gene Family.
    Salazar-Vidal MN; Acosta-Segovia E; Sánchez-León N; Ahern KR; Brutnell TP; Sawers RJ
    PLoS One; 2016; 11(9):e0161882. PubMed ID: 27648940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene.
    Shi J; Wang H; Wu Y; Hazebroek J; Meeley RB; Ertl DS
    Plant Physiol; 2003 Feb; 131(2):507-15. PubMed ID: 12586875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The FUS3 transcription factor functions through the epidermal regulator TTG1 during embryogenesis in Arabidopsis.
    Tsuchiya Y; Nambara E; Naito S; McCourt P
    Plant J; 2004 Jan; 37(1):73-81. PubMed ID: 14675433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes.
    Quattrocchio F; Wing JF; van der Woude K; Mol JN; Koes R
    Plant J; 1998 Feb; 13(4):475-88. PubMed ID: 9680994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles.
    Kroon J; Souer E; de Graaff A; Xue Y; Mol J; Koes R
    Plant J; 1994 Jan; 5(1):69-80. PubMed ID: 8130799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT.
    Kitamura S; Oono Y; Narumi I
    Plant Mol Biol; 2016 Jan; 90(1-2):7-18. PubMed ID: 26608698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1.
    Tian Q; Olsen L; Sun B; Lid SE; Brown RC; Lemmon BE; Fosnes K; Gruis DF; Opsahl-Sorteberg HG; Otegui MS; Olsen OA
    Plant Cell; 2007 Oct; 19(10):3127-45. PubMed ID: 17933905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved Functions of the MATE Transporter BIG EMBRYO1 in Regulation of Lateral Organ Size and Initiation Rate.
    Suzuki M; Sato Y; Wu S; Kang BH; McCarty DR
    Plant Cell; 2015 Aug; 27(8):2288-300. PubMed ID: 26276834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.