BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 14743314)

  • 1. Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea).
    Yang J; Gu H; Yang Z
    J Mol Evol; 2004 Jan; 58(1):54-63. PubMed ID: 14743314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae).
    Yang J; Huang J; Gu H; Zhong Y; Yang Z
    Mol Biol Evol; 2002 Oct; 19(10):1752-9. PubMed ID: 12270901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary rate variation in anthocyanin pathway genes.
    Lu Y; Rausher MD
    Mol Biol Evol; 2003 Nov; 20(11):1844-53. PubMed ID: 12885963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the chalcone synthase genes expressed in flowers of the common and Japanese morning glories.
    Johzuka-Hisatomi Y; Hoshino A; Mori T; Habu Y; Iida S
    Genes Genet Syst; 1999 Aug; 74(4):141-7. PubMed ID: 10650842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of the chalcone synthase multigene family in the morning glory genome.
    Durbin ML; McCaig B; Clegg MT
    Plant Mol Biol; 2000 Jan; 42(1):79-92. PubMed ID: 10688131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the chalcone synthase gene family in the genus Ipomoea.
    Durbin ML; Learn GH; Huttley GA; Clegg MT
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3338-42. PubMed ID: 7724563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxed constraint and evolutionary rate variation between basic helix-loop-helix floral anthocyanin regulators in Ipomoea.
    Streisfeld MA; Rausher MD
    Mol Biol Evol; 2007 Dec; 24(12):2816-26. PubMed ID: 17921484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of new chalcone synthase genes for flower pigmentation in the Japanese and common morning glories.
    Fukada-Tanaka S; Hoshino A; Hisatomi Y; Habu Y; Hasebe M; Iida S
    Plant Cell Physiol; 1997 Jun; 38(6):754-8. PubMed ID: 9249990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution.
    Bielawski JP; Yang Z
    J Mol Evol; 2004 Jul; 59(1):121-32. PubMed ID: 15383915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse selective modes among orthologs/paralogs of the chalcone synthase (Chs) gene family of Arabidopsis thaliana and its relative A. halleri ssp. gemmifera.
    Wang WK; Schaal BA; Chiou YM; Murakami N; Ge XJ; Huang CC; Chiang TY
    Mol Phylogenet Evol; 2007 Aug; 44(2):503-20. PubMed ID: 17611127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular basis of incomplete dominance at the A locus of CHS-D in the common morning glory, Ipomoea purpurea.
    Johzuka-Hisatomi Y; Noguchi H; Iida S
    J Plant Res; 2011 Mar; 124(2):299-304. PubMed ID: 20680382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of mobile element activity in chalcone synthase loci in the common morning glory (Ipomoea purpurea).
    Durbin ML; Denton AL; Clegg MT
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5084-9. PubMed ID: 11309503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages.
    Yang Z; Nielsen R
    Mol Biol Evol; 2002 Jun; 19(6):908-17. PubMed ID: 12032247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene conversion and functional divergence in the beta-globin gene family.
    Aguileta G; Bielawski JP; Yang Z
    J Mol Evol; 2004 Aug; 59(2):177-89. PubMed ID: 15486692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization and evolution of the chalcone synthase gene family in bread wheat and relative species.
    Glagoleva AY; Ivanisenko NV; Khlestkina EK
    BMC Genet; 2019 Mar; 20(Suppl 1):30. PubMed ID: 30885129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive Darwinian selection at the pantophysin (Pan I) locus in marine gadid fishes.
    Pogson GH; Mesa KA
    Mol Biol Evol; 2004 Jan; 21(1):65-75. PubMed ID: 12949133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chalcone synthase gene lineage diversification confirms allopolyploid evolutionary relationships of European rostrate violets.
    van den Hof K; van den Berg RG; Gravendeel B
    Mol Biol Evol; 2008 Oct; 25(10):2099-108. PubMed ID: 18650224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of the monophyly of morning glory taxa using Bayesian phylogenetic inference.
    Miller RE; Buckley TR; Manos PS
    Syst Biol; 2002 Oct; 51(5):740-53. PubMed ID: 12396588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories.
    Iida S; Morita Y; Choi JD; Park KI; Hoshino A
    Adv Biophys; 2004; 38():141-59. PubMed ID: 15493332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites.
    Yang Z; Swanson WJ; Vacquier VD
    Mol Biol Evol; 2000 Oct; 17(10):1446-55. PubMed ID: 11018152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.