These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 14743458)

  • 1. Graded reoxygenation with chemical inhibition of oxidative phosphorylation improves posthypoxic recovery in murine hippocampal slices.
    Huber R; Spiegel T; Büchner M; Riepe MW
    J Neurosci Res; 2004 Feb; 75(3):441-9. PubMed ID: 14743458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: "chemical preconditioning".
    Riepe MW; Esclaire F; Kasischke K; Schreiber S; Nakase H; Kempski O; Ludolph AC; Dirnagl U; Hugon J
    J Cereb Blood Flow Metab; 1997 Mar; 17(3):257-64. PubMed ID: 9119898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide pre-treatment ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia.
    Shetty PK; Galeffi F; Turner DA
    Neurobiol Dis; 2014 Feb; 62():469-78. PubMed ID: 24184921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved posthypoxic recovery in vitro on treatment with drugs used for secondary stroke prevention.
    Huber R; Riepe MW
    Neuropharmacology; 2005 Mar; 48(4):558-65. PubMed ID: 15755483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-synaptic increase of hypoxic tolerance in hippocampus upon physical challenge with two-photon microscopy.
    Büchner M; Huber R; Riepe MW
    Hippocampus; 2002; 12(6):765-73. PubMed ID: 12542228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia.
    Riepe MW; Kasischke K; Raupach A
    Stroke; 1997 Oct; 28(10):2006-11. PubMed ID: 9341711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary hypoxic tolerance and chemical preconditioning during estrus cycle in mice.
    Kasischke K; Huber R; Li H; Timmler M; Riepe MW
    Stroke; 1999 Jun; 30(6):1256-62. PubMed ID: 10356109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADH in the pyramidal cell layer of hippocampal regions CA1 and CA3 upon selective inhibition and uncoupling of oxidative phosphorylation.
    Riepe MW; Schmalzigaug K; Fink F; Oexle K; Ludolph AC
    Brain Res; 1996 Feb; 710(1-2):21-7. PubMed ID: 8963661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release.
    Aldakkak M; Stowe DF; Chen Q; Lesnefsky EJ; Camara AK
    Cardiovasc Res; 2008 Jan; 77(2):406-15. PubMed ID: 17900548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules.
    Feldkamp T; Kribben A; Roeser NF; Senter RA; Kemner S; Venkatachalam MA; Nissim I; Weinberg JM
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F749-59. PubMed ID: 14665431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged anoxic depolarization exacerbates NADH hyperoxidation and promotes poor electrical recovery after anoxia in hippocampal slices.
    Pérez-Pinzón MA; Mumford PL; Sick TJ
    Brain Res; 1998 Mar; 786(1-2):165-70. PubMed ID: 9554996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein binding of NADH on chemical preconditioning.
    Huber R; Büchner M; Li H; Schlieter M; Sperfeld AD; Riepe MW
    J Neurochem; 2000 Jul; 75(1):329-35. PubMed ID: 10854278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroprotection and neuronal dysfunction upon repetitive inhibition of oxidative phosphorylation.
    Hellweg R; von Arnim CA; Büchner M; Huber R; Riepe MW
    Exp Neurol; 2003 Oct; 183(2):346-54. PubMed ID: 14552876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between tissue oxygen tension and NADH imaging during synaptic stimulation and hypoxia in rat hippocampal slices.
    Foster KA; Beaver CJ; Turner DA
    Neuroscience; 2005; 132(3):645-57. PubMed ID: 15837126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Protection of mexiletine against hypoxic damage of synaptic function in hippocampal slices].
    Zhang XS; Wang TY
    Zhongguo Yao Li Xue Bao; 1993 Sep; 14(5):426-9. PubMed ID: 8010033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium influx from the extracellular space promotes NADH hyperoxidation and electrical dysfunction after anoxia in hippocampal slices.
    Pérez-Pinzón MA; Mumford PL; Carranza V; Sick TJ
    J Cereb Blood Flow Metab; 1998 Feb; 18(2):215-21. PubMed ID: 9469165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen uptake by Treponema pallidum.
    Cox CD; Barber MK
    Infect Immun; 1974 Jul; 10(1):123-7. PubMed ID: 4366918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADH hyperoxidation correlates with enhanced susceptibility of aged rats to hypoxia.
    Foster KA; Margraf RR; Turner DA
    Neurobiol Aging; 2008 Apr; 29(4):598-613. PubMed ID: 17184883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidants, mitochondrial hyperoxidation and electrical recovery after anoxia in hippocampal slices.
    Pérez-Pinzón MA; Mumford PL; Rosenthal M; Sick TJ
    Brain Res; 1997 Apr; 754(1-2):163-70. PubMed ID: 9134972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperbaric and normobaric reoxygenation of hypoxic rat brain slices--impact on purine nucleotides and cell viability.
    Günther A; Manaenko A; Franke H; Wagner A; Schneider D; Berrouschot J; Reinhardt R
    Neurochem Int; 2004 Dec; 45(8):1125-32. PubMed ID: 15380622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.