These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 14743473)

  • 1. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations.
    Kirby BJ; Hasselbrink EF
    Electrophoresis; 2004 Jan; 25(2):187-202. PubMed ID: 14743473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zeta potential of microfluidic substrates: 2. Data for polymers.
    Kirby BJ; Hasselbrink EF
    Electrophoresis; 2004 Jan; 25(2):203-13. PubMed ID: 14743474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zeta potential determination by streaming current modelization and measurement in electrophoretic microfluidic systems.
    Renaud L; Kleimann P; Morin P
    Electrophoresis; 2004 Jan; 25(1):123-7. PubMed ID: 14730576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of directional EOF by interactive oscillatory zeta potential.
    Kuo CY; Wang CY; Chang CC
    Electrophoresis; 2008 Nov; 29(21):4386-90. PubMed ID: 18942675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D; van den Ende D; Mugele F
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.
    Zhou MX; Foley JP
    Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method to determine the effective ζ potential in a microchannel with an embedded gate electrode.
    Lenzi A; Viola F; Bonotto F; Frey J; Napoli M; Pennathur S
    Electrophoresis; 2011 Nov; 32(22):3295-304. PubMed ID: 22025198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels.
    Conlisk AT
    Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic fingerprinting of grafted polyelectrolyte layers--a theoretical approach.
    Dukhin SS; Zimmermann R; Werner C
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):93-105. PubMed ID: 16901456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular porous media.
    Crespy A; Bolève A; Revil A
    J Colloid Interface Sci; 2007 Jan; 305(1):188-94. PubMed ID: 17069826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of zeta potential profile for low-dispersion flows in microchannel turns.
    Park HM; Hong SM; Lee JS
    Anal Chim Acta; 2007 Mar; 587(1):14-21. PubMed ID: 17386748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation and comparison of zeta-potentials of silica-based anion-exchange type porous particles for capillary electrochromatography from electrophoretic and electroosmotic mobility.
    Sánchez Muñoz OL; Hernández EP; Lämmerhofer M; Lindner W; Kenndler E
    Electrophoresis; 2003 Jan; 24(3):390-8. PubMed ID: 12569531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields.
    van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A
    Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips.
    Jin Y; Luo GA
    Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable modification of cell adhesion and zeta potential in silica microchips.
    Kirby BJ; Wheeler AR; Zare RN; Fruetel JA; Shepodd TJ
    Lab Chip; 2003 Feb; 3(1):5-10. PubMed ID: 15100798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.
    Datta S; Ghosal S; Patankar NA
    Electrophoresis; 2006 Feb; 27(3):611-9. PubMed ID: 16456890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The zeta potential of PMMA in contact with electrolytes of various conditions: theoretical and experimental investigation.
    Falahati H; Wong L; Davarpanah L; Garg A; Schmitz P; Barz DP
    Electrophoresis; 2014 Mar; 35(6):870-82. PubMed ID: 24254534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels.
    Das S; Subramanian K; Chakraborty S
    Colloids Surf B Biointerfaces; 2007 Aug; 58(2):203-17. PubMed ID: 17481862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.