These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 14743474)
1. Zeta potential of microfluidic substrates: 2. Data for polymers. Kirby BJ; Hasselbrink EF Electrophoresis; 2004 Jan; 25(2):203-13. PubMed ID: 14743474 [TBL] [Abstract][Full Text] [Related]
2. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Kirby BJ; Hasselbrink EF Electrophoresis; 2004 Jan; 25(2):187-202. PubMed ID: 14743473 [TBL] [Abstract][Full Text] [Related]
3. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967 [TBL] [Abstract][Full Text] [Related]
4. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields. van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843 [TBL] [Abstract][Full Text] [Related]
5. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Kelly RT; Pan T; Woolley AT Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386 [TBL] [Abstract][Full Text] [Related]
6. Electrokinetic transport in nanochannels. 2. Experiments. Pennathur S; Santiago JG Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamic fabrication of polymeric barcoded strips as components for parallel bio-analysis and programmable microactuation. Kim S; Oh H; Baek J; Kim H; Kim W; Lee S Lab Chip; 2005 Oct; 5(10):1168-72. PubMed ID: 16175275 [TBL] [Abstract][Full Text] [Related]
8. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification. Lin CH; Lee GB; Fu LM; Chen SH Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580 [TBL] [Abstract][Full Text] [Related]
9. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Liu J; Lee ML Electrophoresis; 2006 Sep; 27(18):3533-46. PubMed ID: 16927422 [TBL] [Abstract][Full Text] [Related]
10. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model. Zhou MX; Foley JP Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420 [TBL] [Abstract][Full Text] [Related]
12. Surface-reactive acrylic copolymer for fabrication of microfluidic devices. Liu J; Sun X; Lee ML Anal Chem; 2005 Oct; 77(19):6280-7. PubMed ID: 16194089 [TBL] [Abstract][Full Text] [Related]
13. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips. Jin Y; Luo GA Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918 [TBL] [Abstract][Full Text] [Related]
14. The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Mela P; van den Berg A; Fintschenko Y; Cummings EB; Simmons BA; Kirby BJ Electrophoresis; 2005 May; 26(9):1792-9. PubMed ID: 15812849 [TBL] [Abstract][Full Text] [Related]
16. Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials. Lin JL; Lee KH; Lee GB Electrophoresis; 2005 Dec; 26(24):4605-15. PubMed ID: 16358251 [TBL] [Abstract][Full Text] [Related]
17. The zeta potential of PMMA in contact with electrolytes of various conditions: theoretical and experimental investigation. Falahati H; Wong L; Davarpanah L; Garg A; Schmitz P; Barz DP Electrophoresis; 2014 Mar; 35(6):870-82. PubMed ID: 24254534 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Sundararajan N; Kim D; Berlin AA Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212 [TBL] [Abstract][Full Text] [Related]
19. Optimization of zeta potential profile for low-dispersion flows in microchannel turns. Park HM; Hong SM; Lee JS Anal Chim Acta; 2007 Mar; 587(1):14-21. PubMed ID: 17386748 [TBL] [Abstract][Full Text] [Related]
20. A glassy carbon microfluidic device for electrospray mass spectrometry. Ssenyange S; Taylor J; Harrison DJ; McDermott MT Anal Chem; 2004 Apr; 76(8):2393-7. PubMed ID: 15080753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]