BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 14743475)

  • 1. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.
    Ghosal S
    Electrophoresis; 2004 Jan; 25(2):214-28. PubMed ID: 14743475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips.
    Jin Y; Luo GA
    Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of electroosmotic flow, retention and separation efficiency in capillary electrochromatography.
    Rathore AS
    Electrophoresis; 2002 Nov; 23(22-23):3827-46. PubMed ID: 12481279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electroosmotic flow on selectivity, efficiency, and resolution in capillary zone electrophoresis expressed by the dimensionless reduced mobility.
    Kenndler E
    J Capillary Electrophor; 1996; 3(4):191-8. PubMed ID: 9384736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic flow and electroosmotic flow in zirconia-packed capillaries.
    Crosnier de Bellaistre M; Randon J; Rocca JL
    Electrophoresis; 2006 Feb; 27(4):736-41. PubMed ID: 16470622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.
    Belder D; Deege A; Kohler F; Ludwig M
    Electrophoresis; 2002 Oct; 23(20):3567-73. PubMed ID: 12412126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ESI-MS compatible permanent coating of glass surfaces using poly(ethylene glycol)-terminated alkoxysilanes for capillary zone electrophoretic protein separations.
    Razunguzwa TT; Warrier M; Timperman AT
    Anal Chem; 2006 Jul; 78(13):4326-33. PubMed ID: 16808439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.
    Otevrel M; Klepárník K
    Electrophoresis; 2002 Oct; 23(20):3574-82. PubMed ID: 12412127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of complexation additives on analyte migration behavior in capillary electrochromatography.
    Bowser MT; Chen DD
    Electrophoresis; 1998 Jun; 19(8-9):1452-60. PubMed ID: 9694295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary.
    Kaneta T; Ueda T; Hata K; Imasaka T
    J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of geometry effects on band spreading of microchip electrophoresis.
    Fu LM; Yang RJ; Lee GB
    Electrophoresis; 2002 Feb; 23(4):602-12. PubMed ID: 11870772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
    Foley JP; Blackney DM; Ennis EJ
    J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic pump-assisted capillary electrophoresis of proteins.
    Xu L; Dong XY; Sun Y
    J Chromatogr A; 2009 Aug; 1216(32):6071-6. PubMed ID: 19576588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the EOF in CE using polyelectrolytes of different charge densities.
    Danger G; Ramonda M; Cottet H
    Electrophoresis; 2007 Mar; 28(6):925-31. PubMed ID: 17309049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peak broadening in microchip electrophoresis: a discussion of the theoretical background.
    Gas B; Kenndler E
    Electrophoresis; 2002 Nov; 23(22-23):3817-26. PubMed ID: 12481278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring electroosmotic flow in microchips and capillaries.
    Gilman SD; Chapman PJ
    Methods Mol Biol; 2006; 339():187-202. PubMed ID: 16790874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrokinetic/hydrodynamic flow microfluidic CE-ESI-MS interface utilizing a hydrodynamic flow restrictor for delivery of samples under low EOF conditions.
    Razunguzwa TT; Lenke J; Timperman AT
    Lab Chip; 2005 Aug; 5(8):851-5. PubMed ID: 16027936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.