BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14743485)

  • 21. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D; Besselink GA; Schlautmann S; Schasfoort RB
    Lab Chip; 2006 Mar; 6(3):374-80. PubMed ID: 16511620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent developments in preparative free flow isoelectric focusing.
    Weber G; Bocek P
    Electrophoresis; 1998 Jul; 19(10):1649-53. PubMed ID: 9719540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2017 Mar; 38(5):677-688. PubMed ID: 27699824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic analyte introduction and focusing in plastic microfluidic devices for proteomic analysis.
    Li Y; DeVoe DL; Lee CS
    Electrophoresis; 2003 Jan; 24(1-2):193-9. PubMed ID: 12652591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous flow isoelectric focusing for purification of proteins.
    Soulet N; Roux-de Balmann H; Sanchez V
    Electrophoresis; 1998 Jun; 19(8-9):1294-9. PubMed ID: 9694268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sampling strategies for capillary isoelectric focusing with electroosmotic zone mobilization assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Páger C; Mosher RA; Thormann W
    Electrophoresis; 2012 Mar; 33(6):970-80. PubMed ID: 22655305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional gel isoelectric focusing.
    Stastná M; Slais K
    Electrophoresis; 2005 Sep; 26(18):3586-91. PubMed ID: 16100746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental and theoretical dynamics of isoelectric focusing: IV. Cathodic, anodic and symmetrical drifts of the pH gradient.
    Mosher RA; Thormann W
    Electrophoresis; 1990 Sep; 11(9):717-23. PubMed ID: 2257843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reverse isoelectric focusing procedure resolves charge variants of basic proteins.
    Madden MS
    Anal Biochem; 1995 Aug; 229(2):203-6. PubMed ID: 7485973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Density gradient isoelectric focusing of proteins in artificial pH gradients made up of binary mixtures of amphoteric buffers.
    Tulp A; Verwoerd D; Hart AA
    Electrophoresis; 1997 May; 18(5):767-73. PubMed ID: 9194604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilized pH gradients: effect of salts, added carrier ampholytes and voltage gradients on protein patterns.
    Righetti PG; Chiari M; Gelfi C
    Electrophoresis; 1988 Feb; 9(2):65-73. PubMed ID: 3234339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device.
    Das C; Fan ZH
    Electrophoresis; 2006 Sep; 27(18):3619-26. PubMed ID: 16915565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Column isoelectric focusing in natural pH gradients generated by biological buffers.
    Vaidya NR; Gothoskar BP; Banerji AP
    Electrophoresis; 1990 Feb; 11(2):156-61. PubMed ID: 2338071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparative isoelectric focusing of proteins using binary buffers in a vortex-stabilized, free-flow apparatus.
    Tracy NI; Ivory CF
    Electrophoresis; 2004 Jun; 25(12):1748-57. PubMed ID: 15213972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micropreparative isoelectric focusing protein separation in a suspended drop.
    Egatz-Gomez A; Thormann W
    Electrophoresis; 2011 Jun; 32(12):1433-7. PubMed ID: 21626519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophoretically silent hemoglobin mutants as revealed by isoelectric focusing in immobilized pH gradients.
    Righetti PG; Gianazza E; Bianchi-Bosisio A; Wajcman H; Cossu G
    Electrophoresis; 1989; 10(8-9):595-9. PubMed ID: 2806209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flattening and/or expanding of pH gradients in isoelectric focusing gels exemplified with PhastSystem.
    Hackler R; Kleine TO
    Electrophoresis; 1988 Jun; 9(6):262-7. PubMed ID: 3234364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution dynamic computer simulation analysis of the behavior of sample components with pI values outside the pH gradient established by carrier ampholyte CIEF.
    Thormann W; Kilár F
    Electrophoresis; 2013 Mar; 34(5):716-24. PubMed ID: 23229109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peak identification in capillary isoelectric focusing using the concept of relative peak position as determined by two isoelectric point markers.
    Wu J; Huang T
    Electrophoresis; 2006 Sep; 27(18):3584-90. PubMed ID: 16927345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilized pH gradients (IPG) simulator--an additional step in pH gradient engineering: II. Nonlinear pH gradients.
    Righetti PG; Tonani C
    Electrophoresis; 1991 Dec; 12(12):1021-7. PubMed ID: 1815953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.