BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 14743487)

  • 1. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: ethanol as background electrolyte solvent.
    Palonen S; Jussila M; Porras SP; Riekkola ML
    Electrophoresis; 2004 Jan; 25(2):344-54. PubMed ID: 14743487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent.
    Palonen S; Porras SP; Jussila M; Riekkola ML
    Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonaqueous capillary electrophoresis with alcoholic background electrolytes: separation efficiency under high electrical field strengths.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    Electrophoresis; 2002 Feb; 23(3):393-9. PubMed ID: 11870738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonaqueous capillary electrophoresis in coated capillaries: an interesting alternative for proteomic applications.
    Assunção NA; Deziderio LA; Paulino LG; Lupetti KO; Carrilho E
    Electrophoresis; 2005 Sep; 26(17):3292-9. PubMed ID: 16080212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation efficiency in protein zone electrophoresis performed in capillaries of different diameters.
    St'astná M; Radko SP; Chrambach A
    Electrophoresis; 2000 Mar; 21(5):985-92. PubMed ID: 10768785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of initial voltage ramp on separation efficiency in non-aqueous capillary electrophoresis with ethanol as background electrolyte solvent.
    Palonen S; Jussila M; Riekkola ML
    J Chromatogr A; 2005 Mar; 1068(1):107-14. PubMed ID: 15844548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensation of the siphoning effect in nonaqueous capillary electrophoresis by vial lifting.
    Jussila M; Palonen S; Porras SP; Riekkola ML
    Electrophoresis; 2000 Feb; 21(3):586-92. PubMed ID: 10726764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look.
    Petersen NJ; Nikolajsen RP; Mogensen KB; Kutter JP
    Electrophoresis; 2004 Jan; 25(2):253-69. PubMed ID: 14743478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical overview of non-aqueous capillary electrophoresis. Part II: separation efficiency and analysis time.
    Kenndler E
    J Chromatogr A; 2014 Mar; 1335():31-41. PubMed ID: 24485541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely high electric field strengths in non-aqueous capillary electrophoresis.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    J Chromatogr A; 2001 May; 916(1-2):89-99. PubMed ID: 11382314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joule heating effects on separation efficiency in capillary zone electrophoresis with an initial voltage ramp.
    Xuan X; Hu G; Li D
    Electrophoresis; 2006 Aug; 27(16):3171-80. PubMed ID: 16850504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-uniform surface charge distributions in CE: theoretical and experimental approach based on Taylor dispersion.
    Danger G; Pascal R; Cottet H
    Electrophoresis; 2008 Nov; 29(20):4226-37. PubMed ID: 18924104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast DNA analysis by capillary electrophoresis/laser-induced fluorescence detection.
    Müller O; Minarik M; Foret F
    Electrophoresis; 1998 Jun; 19(8-9):1436-44. PubMed ID: 9694293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyte and system eigenpeaks in nonaqueous capillary zone electrophoresis: theoretical description and experimental confirmation with methanol as solvent.
    Vceláková K; Zusková I; Porras SP; Gas B; Kenndler E
    Electrophoresis; 2005 Jan; 26(2):463-72. PubMed ID: 15657898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of lidocaine and its metabolites by capillary electrophoresis using volatile aqueous and nonaqueous electrolyte systems.
    Wang Z; Wan H; Anderson MS; Abdel-Rehim M; Blomberg LG
    Electrophoresis; 2001 Aug; 22(12):2495-502. PubMed ID: 11519953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparative capillary zone electrophoresis using a dynamic coated wide-bore capillary.
    Yassine MM; Lucy CA
    Electrophoresis; 2006 Aug; 27(15):3066-74. PubMed ID: 16807937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.