BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 14743975)

  • 1. The properties and functions of bacterial aminopeptidases.
    Jankiewicz U; Bielawski W
    Acta Microbiol Pol; 2003; 52(3):217-31. PubMed ID: 14743975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial aminopeptidases: properties and functions.
    Gonzales T; Robert-Baudouy J
    FEMS Microbiol Rev; 1996 Jul; 18(4):319-44. PubMed ID: 8703509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial beta-peptidyl aminopeptidases with unique substrate specificities for beta-oligopeptides and mixed beta,alpha-oligopeptides.
    Geueke B; Heck T; Limbach M; Nesatyy V; Seebach D; Kohler HP
    FEBS J; 2006 Dec; 273(23):5261-72. PubMed ID: 17064315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: insights into substrate recognition and the mechanism of catalysis.
    Graham SC; Lilley PE; Lee M; Schaeffer PM; Kralicek AV; Dixon NE; Guss JM
    Biochemistry; 2006 Jan; 45(3):964-75. PubMed ID: 16411772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and mutational studies of the number of interacting divalent cations required by bacterial and human methionine aminopeptidases.
    Hu XV; Chen X; Han KC; Mildvan AS; Liu JO
    Biochemistry; 2007 Nov; 46(44):12833-43. PubMed ID: 17929833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptomyces aminopeptidase P: biochemical characterization and insight into the roles of its N-terminal domain.
    Arima J; Uesugi Y; Iwabuchi M; Hatanaka T
    Protein Eng Des Sel; 2008 Jan; 21(1):45-53. PubMed ID: 18156635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial β-aminopeptidases: structural insights and applications for biocatalysis.
    Heck T; Geueke B; Kohler HP
    Chem Biodivers; 2012 Nov; 9(11):2388-409. PubMed ID: 23161625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases.
    Isorna P; Polaina J; Latorre-García L; Cañada FJ; González B; Sanz-Aparicio J
    J Mol Biol; 2007 Aug; 371(5):1204-18. PubMed ID: 17585934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic degradation of beta- and mixed alpha,beta-oligopeptides.
    Heck T; Limbach M; Geueke B; Zacharias M; Gardiner J; Kohler HP; Seebach D
    Chem Biodivers; 2006 Dec; 3(12):1325-48. PubMed ID: 17193247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel aminopeptidase from Burkholderia cepacia specific for acidic amino acids.
    Jamdar SN
    FEMS Microbiol Lett; 2009 Jun; 295(2):230-7. PubMed ID: 19456865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative characteristics of soluble and membrane brain aminopeptidases. I. Isolation, physico-chemical properties, catalytic activity].
    Kolesanova EF; Rotanova TV; Amerik AIu; Ginodman LM; Antonov VK
    Bioorg Khim; 1986 Mar; 12(3):340-8. PubMed ID: 3964306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis.
    Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J
    J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based elucidation of the regulatory mechanism for aminopeptidase activity.
    Ta HM; Bae S; Han S; Song J; Ahn TK; Hohng S; Lee S; Kim KK
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1738-47. PubMed ID: 23999297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-Aminopeptidases: Insight into Enzymes without a Known Natural Substrate.
    John-White M; Gardiner J; Johanesen P; Lyras D; Dumsday G
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling or regulation? The role of amino-terminal modifying enzymes.
    Walling LL
    Curr Opin Plant Biol; 2006 Jun; 9(3):227-33. PubMed ID: 16597508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism.
    Stengl B; Reuter K; Klebe G
    Chembiochem; 2005 Nov; 6(11):1926-39. PubMed ID: 16206323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R; Ren B
    FEBS J; 2006 Sep; 273(18):4170-85. PubMed ID: 16930136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural aspects of L-asparaginases, their friends and relations.
    Michalska K; Jaskolski M
    Acta Biochim Pol; 2006; 53(4):627-40. PubMed ID: 17143335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases.
    Nandan A; Nampoothiri KM
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5243-5257. PubMed ID: 32342144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.