These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14744005)

  • 1. Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram.
    Ren L; Liu L; Liu D; Zu J; Luan Z
    Opt Lett; 2004 Jan; 29(2):186-8. PubMed ID: 14744005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal recording wavelength for maximum diffraction efficiency of thermal fixing in LiNbO3:Fe.
    Hou P; Zhi Y; Sun J; Liu L
    Appl Opt; 2011 Apr; 50(11):1554-9. PubMed ID: 21478928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dopant composition ratio on nonvolatile holographic recording in LiNbO3:Cu:Ce crystals.
    Dong Q; Liu L; Liu D; Dai C; Ren L
    Appl Opt; 2004 Sep; 43(26):5016-22. PubMed ID: 15468702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonvolatile holograms in LiNbO3:Fe:Cu by use of the bleaching effect.
    Liu D; Liu L; Zhou C; Ren L; Li G
    Appl Opt; 2002 Nov; 41(32):6809-14. PubMed ID: 12440535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonvolatile photorefractive holograms in LiNbO(3):CuCe crystals.
    Liu Y; Liu L; Zhou C; Xu L
    Opt Lett; 2000 Jun; 25(12):908-10. PubMed ID: 18064223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption characteristic and nonvolatile holographic recording in LiNbO3:Cr:Cu crystals.
    Guo Y; Liu L; Liu D; Deng S; Zhi Y
    Appl Opt; 2005 Nov; 44(33):7106-11. PubMed ID: 16318181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal conditions for thermal fixing of volume holograms in Fe:LiNbO3 crystals.
    Hsieh CR; Lin SH; Hsu KY; Hsieh TC; Chiou A; Hong J
    Appl Opt; 1999 Oct; 38(29):6141-51. PubMed ID: 18324137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation.
    Frejlich J; de Oliveira I; Arizmendi L; Carrascosa M
    Appl Opt; 2007 Jan; 46(2):227-33. PubMed ID: 17268568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical phase conjugation of diffused light with infinite gain by using gated two-color photorefractive crystal LiNbO
    Pang G; Liu H; Hou P; Qiao M; Han S
    Appl Opt; 2018 Apr; 57(10):2675-2678. PubMed ID: 29714256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of recording conditions on crossed-beam photorefractive gratings in doubly doped LiNbO3 crystals.
    Wang X; Yan A; Liu L; Liu D; Zhi Y; Hu Z
    Appl Opt; 2006 Aug; 45(23):5942-9. PubMed ID: 16926882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of recording-erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram.
    Zhou H; Zhao F; Yu FT
    Appl Opt; 1994 Jul; 33(20):4339-44. PubMed ID: 20935791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonvolatile holographic storage of near-stoichiometric LiNbO3:Cu:Ce with green light.
    Li X; Kong Y; Wang Y; Wang L; Liu F; Liu H; An Y; Chen S; Xu J
    Appl Opt; 2007 Nov; 46(31):7620-4. PubMed ID: 17973005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient local fixing of photorefractive polymer hologram using a laser beam.
    Li G; Wang P
    Appl Phys Lett; 2010 Mar; 96(11):111109. PubMed ID: 20383297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffraction properties of a reflection photorefractive hologram.
    Zhou H; Zhao F; Yu FT
    Appl Opt; 1994 Jul; 33(20):4345-52. PubMed ID: 20935792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-dependent diffraction efficiency of a photorefractive volume grating and suppression of this efficiency.
    Zhao J; Li J; Xiang H; Di J
    Appl Opt; 2005 May; 44(15):3013-8. PubMed ID: 15929292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Thermal Fixing of a Photorefractive LiNbO(3) Hologram by use of a CO(2) Laser.
    Liu B; Liu L; Xu L; Ma J; Lee SH
    Appl Opt; 1998 Mar; 37(8):1342-9. PubMed ID: 18268721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-Bragg analysis of the diffraction efficiency of reflection photorefractive holograms.
    Nonaka K
    Appl Opt; 1998 May; 37(15):3215-21. PubMed ID: 18273272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recording schedule for partially coherent hologram multiplexing in a photorefractive medium.
    Ito T; Okamoto A; Sato K
    Appl Opt; 2007 Aug; 46(23):5902-11. PubMed ID: 17694141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental studies of hologram multiplexing that uses a random wave front generated by photorefractive beam fanning.
    Bunsen M; Okamoto A
    Appl Opt; 2005 Mar; 44(8):1454-63. PubMed ID: 15796245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recording and erasure of photorefractive holograms in undoped BTO crystal at moderate to high intensities of 639.7  nm laser under action of 532  nm laser pre-illumination.
    Lopes WR; Medeiros HFA; Santos GS; Araujo TC; Carvalho JF; Dos Santos PV; de Araujo MT
    J Opt Soc Am A Opt Image Sci Vis; 2018 Nov; 35(11):1919-1928. PubMed ID: 30461852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.