These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14744094)

  • 1. From functional genomics to systems biology: concepts and practices.
    Auffray C; Imbeaud S; Roux-Rouquié M; Hood L
    C R Biol; 2003; 326(10-11):879-92. PubMed ID: 14744094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a truly integrative biology through the functional genomics of yeast.
    Delneri D; Brancia FL; Oliver SG
    Curr Opin Biotechnol; 2001 Feb; 12(1):87-91. PubMed ID: 11167079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics.
    Castrillo JI; Oliver SG
    J Biochem Mol Biol; 2004 Jan; 37(1):93-106. PubMed ID: 14761307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional genomics: lessons from yeast.
    Oliver SG
    Philos Trans R Soc Lond B Biol Sci; 2002 Jan; 357(1417):17-23. PubMed ID: 11839178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast functional genomics and cell biology: no longer in the dark.
    Friesen H; Millman JS; Andrews BJ
    Genome Biol; 2003; 4(12):352. PubMed ID: 14659014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systems biology approach to developmental toxicology.
    Cummings A; Kavlock R
    Reprod Toxicol; 2005; 19(3):281-90. PubMed ID: 15686864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. European Functional Analysis Network (EUROFAN) and the functional analysis of the Saccharomyces cerevisiae genome.
    Dujon B
    Electrophoresis; 1998 Apr; 19(4):617-24. PubMed ID: 9588813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond.
    Suter B; Auerbach D; Stagljar I
    Biotechniques; 2006 May; 40(5):625-44. PubMed ID: 16708762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.
    Ideker T; Thorsson V; Ranish JA; Christmas R; Buhler J; Eng JK; Bumgarner R; Goodlett DR; Aebersold R; Hood L
    Science; 2001 May; 292(5518):929-34. PubMed ID: 11340206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A personal history of the echinoderm genome sequencing.
    Cameron RA
    Methods Cell Biol; 2019; 151():55-61. PubMed ID: 30948031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a new sea urchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter.
    Wei Z; Angerer RC; Angerer LM
    Mol Cell Biol; 1999 Feb; 19(2):1271-8. PubMed ID: 9891061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.
    Celedon JM; Bohlmann J
    Methods Enzymol; 2016; 576():47-67. PubMed ID: 27480682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A view from the genome: spatial control of transcription in sea urchin development.
    Davidson EH
    Curr Opin Genet Dev; 1999 Oct; 9(5):530-41. PubMed ID: 10508696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine.
    Weston AD; Hood L
    J Proteome Res; 2004; 3(2):179-96. PubMed ID: 15113093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systems biology: integrating technology, biology, and computation.
    Hood L
    Mech Ageing Dev; 2003 Jan; 124(1):9-16. PubMed ID: 12618001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.
    Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS
    J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sea urchin embryo, DNA-damaged cell cycle checkpoint and the mechanisms initiating cancer development].
    Bellé R; Le Bouffant R; Morales J; Cosson B; Cormier P; Mulner-Lorillon O
    J Soc Biol; 2007; 201(3):317-27. PubMed ID: 18157084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediary metabolism in sea urchin: the first inferences from the genome sequence.
    Goel M; Mushegian A
    Dev Biol; 2006 Dec; 300(1):282-92. PubMed ID: 16979151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide signals of positive selection in strongylocentrotid sea urchins.
    Kober KM; Pogson GH
    BMC Genomics; 2017 Jul; 18(1):555. PubMed ID: 28732465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems biology at the Institute for Systems Biology.
    Hood L; Rowen L; Galas DJ; Aitchison JD
    Brief Funct Genomic Proteomic; 2008 Jul; 7(4):239-48. PubMed ID: 18579616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.