BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1474421)

  • 21. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model.
    Kienle A; Glanzmann T
    Phys Med Biol; 1999 Nov; 44(11):2689-702. PubMed ID: 10588278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of temperature-dependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy.
    Kim S; Jeong S
    Lasers Med Sci; 2014 Mar; 29(2):637-44. PubMed ID: 23807181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptations of the reed frog Hyperolius viridiflavus (Amphibia: Anura: Hyperoliidae) to its arid environment. VI. The iridophores in the skin as radiation reflectors.
    Kobelt F; Linsenmair KE
    J Comp Physiol B; 1992; 162(4):314-26. PubMed ID: 1506488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variations in tissue optical parameters with the incident power of an infrared laser.
    Hamdy O; Mohammed HS
    PLoS One; 2022; 17(1):e0263164. PubMed ID: 35100314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light transport in tissue: Accurate expressions for one-dimensional fluence rate and escape function based upon monte carlo simulation.
    Gardner CM; Jacques SL; Welch AJ
    Lasers Surg Med; 1996; 18(2):129-38. PubMed ID: 8833281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid modeling of diffuse reflectance of light in turbid slabs.
    Wang LV
    J Opt Soc Am A Opt Image Sci Vis; 1998 Apr; 15(4):936-44. PubMed ID: 9536515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Penetration of light into multiple scattering media: model calculations and reflectance experiments. Part I: the axial transfer.
    Oelkrug D; Brun M; Rebner K; Boldrini B; Kessler R
    Appl Spectrosc; 2012 Aug; 66(8):934-43. PubMed ID: 22800964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reflectance feedback control of photocoagulation in vivo.
    Jerath MR; Chundru R; Barrett SF; Rylander HG; Welch AJ
    Arch Ophthalmol; 1993 Apr; 111(4):531-4. PubMed ID: 8470988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm.
    Ao H; Xing D; Wei H; Gu H; Wu G; Lu J
    Phys Med Biol; 2008 Apr; 53(8):2197-206. PubMed ID: 18385526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography.
    Tanifuji T; Hijikata M
    IEEE Trans Med Imaging; 2002 Feb; 21(2):181-4. PubMed ID: 11929105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic reflectometer for control of laser photocoagulation on the retina.
    Inderfurth JH; Ferguson RD; Frish MB; Birngruber R
    Lasers Surg Med; 1994; 15(1):54-61. PubMed ID: 7997048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Possibility of choriocapillary occlusion under experimental subretinal hemorrhage by photocoagulation with lasers of different wavelengths.
    Miki T; Inoue K; Obana A; Shiraki K
    Lasers Surg Med; 1989; 9(6):543-55. PubMed ID: 2601548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histopathology of diode and argon laser lesions in rabbit retina. A comparative study.
    Brancato R; Pratesi R; Leoni G; Trabucchi G; Vanni U
    Invest Ophthalmol Vis Sci; 1989 Jul; 30(7):1504-10. PubMed ID: 2744993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of light losses of sample between two integrating spheres on optical properties estimation.
    Zhu D; Lu W; Zeng S; Luo Q
    J Biomed Opt; 2007; 12(6):064004. PubMed ID: 18163820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance.
    Yudovsky D; Pilon L
    Appl Opt; 2010 Apr; 49(10):1707-19. PubMed ID: 20357850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental argon laser photocoagulation. III. Relative dangers of immediate vs delayed retreatment.
    Apple DJ; Wyhinny GJ; Goldberg MF; Bizzell JW; Broderson JP
    Arch Ophthalmol; 1976 Feb; 94(2):309-12. PubMed ID: 814886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical phantom materials for near infrared laser photocoagulation studies.
    Iizuka MN; Sherar MD; Vitkin IA
    Lasers Surg Med; 1999; 25(2):159-69. PubMed ID: 10455223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Steps to optimize transscleral photocoagulation.
    Preussner PR; Schwenn O
    Graefes Arch Clin Exp Ophthalmol; 1995 May; 233(5):302-6. PubMed ID: 7622079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical interference, contrast-enhanced electroluminescent device.
    Dobrowolski JA; Sullivan BT; Bajcar RC
    Appl Opt; 1992 Oct; 31(28):5988-96. PubMed ID: 20733799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.