These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 14744482)
1. Controlled drug release from hydrogel nanoparticle networks. Huang G; Gao J; Hu Z; St John JV; Ponder BC; Moro D J Control Release; 2004 Feb; 94(2-3):303-11. PubMed ID: 14744482 [TBL] [Abstract][Full Text] [Related]
2. A Novel Temperature-Dependent Hydrogel Emulsion with Sol/Gel Reversible Phase Transition Behavior Based on Polystyrene-co-poly(N-isopropylacrylamide)/Poly(N-isopropylacrylamide) Core-Shell Nanoparticle. Jiang Y; Yan R; Pang B; Mi J; Zhang Y; Liu H; Xin J; Zhang Y; Li N; Zhao Y; Lin Q Macromol Rapid Commun; 2021 Jan; 42(2):e2000507. PubMed ID: 33210416 [TBL] [Abstract][Full Text] [Related]
3. Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Kim AR; Lee SL; Park SN Int J Biol Macromol; 2018 Oct; 118(Pt A):731-740. PubMed ID: 29940230 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of poly(N-isopropylacrylamide)-modified poly(2-hydroxyethyl acrylate) hydrogels by interpenetrating polymer networks for sustained drug release. Liu YY; Lü J; Shao YH Macromol Biosci; 2006 Jun; 6(6):452-8. PubMed ID: 16761277 [TBL] [Abstract][Full Text] [Related]
5. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers. Kim S; Lee K; Cha C J Biomater Sci Polym Ed; 2016 Dec; 27(17):1698-1711. PubMed ID: 27573586 [TBL] [Abstract][Full Text] [Related]
6. Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. Wang Y; Li Z; Ouyang J; Karniadakis GE Soft Matter; 2020 May; 16(20):4756-4766. PubMed ID: 32373893 [TBL] [Abstract][Full Text] [Related]
7. Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks. Brahima S; Boztepe C; Kunkul A; Yuceer M Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():425-432. PubMed ID: 28415481 [TBL] [Abstract][Full Text] [Related]
8. Sequential intracellular release of water-soluble cargos from Shell-crosslinked polymersomes. Du F; Bobbala S; Yi S; Scott EA J Control Release; 2018 Jul; 282():90-100. PubMed ID: 29601932 [TBL] [Abstract][Full Text] [Related]
9. Characterization of pH- and temperature-sensitive hydrogel nanoparticles for controlled drug release. Chen H; Gu Y; Hub Y; Qian Z PDA J Pharm Sci Technol; 2007; 61(4):303-13. PubMed ID: 17933211 [TBL] [Abstract][Full Text] [Related]
10. Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Liu YY; Shao YH; Lü J Biomaterials; 2006 Jul; 27(21):4016-24. PubMed ID: 16563494 [TBL] [Abstract][Full Text] [Related]
12. Thermally Responsive Hydrogel Blends: A General Drug Carrier Model for Controlled Drug Release. Ma C; Shi Y; Pena DA; Peng L; Yu G Angew Chem Int Ed Engl; 2015 Jun; 54(25):7376-80. PubMed ID: 25950422 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels. Li Z; Shen J; Ma H; Lu X; Shi M; Li N; Ye M Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):1951-7. PubMed ID: 23498217 [TBL] [Abstract][Full Text] [Related]
14. Preparation and release of model drugs from thermally sensitive poly(N-isopropylacrylamide) based macrospheres. Lewis G; Coughlan DC; Lane ME; Corrigan OI J Microencapsul; 2006 Sep; 23(6):677-85. PubMed ID: 17118883 [TBL] [Abstract][Full Text] [Related]
15. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers' components. Pippa N; Meristoudi A; Pispas S; Demetzos C Int J Pharm; 2015 May; 485(1-2):374-82. PubMed ID: 25776453 [TBL] [Abstract][Full Text] [Related]
16. Reversible Thermoresponsive Peptide-PNIPAM Hydrogels for Controlled Drug Delivery. Cao M; Wang Y; Hu X; Gong H; Li R; Cox H; Zhang J; Waigh TA; Xu H; Lu JR Biomacromolecules; 2019 Sep; 20(9):3601-3610. PubMed ID: 31365246 [TBL] [Abstract][Full Text] [Related]
17. Cooling-Triggered Release from Mesoporous Poly( Vikulina AS; Feoktistova NA; Balabushevich NG; von Klitzing R; Volodkin D ACS Appl Mater Interfaces; 2020 Dec; 12(51):57401-57409. PubMed ID: 33290041 [TBL] [Abstract][Full Text] [Related]
18. Temperature sensitive poly[N-isopropylacrylamide-co-(acryloyl beta-cyclodextrin)] for improved drug release. Zhang JT; Huang SW; Liu J; Zhuo RX Macromol Biosci; 2005 Mar; 5(3):192-6. PubMed ID: 15768437 [TBL] [Abstract][Full Text] [Related]
19. Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels. Coughlan DC; Quilty FP; Corrigan OI J Control Release; 2004 Jul; 98(1):97-114. PubMed ID: 15245893 [TBL] [Abstract][Full Text] [Related]
20. Time-programmed pulsatile release of dextran from calcium-alginate gel beads coated with carboxy-n-propylacrylamide copolymers. Iskakov RM; Kikuchi A; Okano T J Control Release; 2002 Apr; 80(1-3):57-68. PubMed ID: 11943387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]