BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 14744899)

  • 1. Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats.
    Kanda H; Morimoto T; Fujikado T; Tano Y; Fukuda Y; Sawai H
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):560-6. PubMed ID: 14744899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring spatial visual loss in rats by retinotopic mapping of the superior colliculus using a novel multi-electrode array technique.
    Rajendran Nair DS; Camarillo JC; Lu G; Thomas BB
    J Neurosci Methods; 2024 May; 405():110095. PubMed ID: 38403001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis.
    Cao X; Sui X; Lyu Q; Li L; Chai X
    J Neuroeng Rehabil; 2015 Aug; 12():73. PubMed ID: 26311232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials.
    Mandel Y; Goetz G; Lavinsky D; Huie P; Mathieson K; Wang L; Kamins T; Galambos L; Manivanh R; Harris J; Palanker D
    Nat Commun; 2013; 4():1980. PubMed ID: 23778557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits.
    Zhou JA; Woo SJ; Park SI; Kim ET; Seo JM; Chung H; Kim SJ
    J Biomed Biotechnol; 2008; 2008():547428. PubMed ID: 18317521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel GCaMP6f-RCS rat model for studying electrical stimulation in the degenerated retina.
    Azrad Leibovitch T; Farah N; Markus A; Mandel Y
    Front Cell Dev Biol; 2024; 12():1386141. PubMed ID: 38711618
    [No Abstract]   [Full Text] [Related]  

  • 7. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration.
    Chung WG; Jang J; Cui G; Lee S; Jeong H; Kang H; Seo H; Kim S; Kim E; Lee J; Lee SG; Byeon SH; Park JU
    Nat Nanotechnol; 2024 May; 19(5):688-697. PubMed ID: 38225357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects on Retinal Stimulation of the Geometry and the Insertion Location of Penetrating Electrodes.
    Son Y; Chen ZC; Roh H; Lee BC; Im M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3803-3812. PubMed ID: 37729573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic electrical stimulation with a peripheral suprachoroidal retinal implant: a preclinical safety study of neuroprotective stimulation.
    Abbott CJ; Allen PJ; Williams CE; Williams RA; Epp SB; Burns O; Thomas R; Harrison M; Thien PC; Saunders A; McGowan C; Sloan C; Luu CD; Nayagam DAX
    Front Cell Dev Biol; 2024; 12():1422764. PubMed ID: 38966426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats.
    Arens-Arad T; Farah N; Ben-Yaish S; Zlotnik A; Zalevsky Z; Mandel Y
    Sci Rep; 2016 Oct; 6():34873. PubMed ID: 27731346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based microfluidic perforated microelectrode arrays for retinal electrophysiological studies.
    Esteban-Linares A; Zhang X; Lee HH; Risner ML; Weiss SM; Xu YQ; Levine E; Li D
    Lab Chip; 2023 May; 23(9):2193-2205. PubMed ID: 36891773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Induced Current Density During Transcorneal Electrical Stimulation to Promote Neuroprotection in the Degenerating Retina.
    Iseri E; Kosta P; Pollalis D; Lo PA; Tew BY; Louie S; Salhia B; Humayun M; Lazzi G
    IEEE Trans Biomed Eng; 2024 Jun; PP():. PubMed ID: 38861449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Ultrasound Retinal Stimulation for Vision Restoration at High Spatiotemporal Resolution.
    Qian X; Lu G; Thomas BB; Li R; Chen X; Shung KK; Humayun M; Zhou Q
    BME Front; 2022; 2022():9829316. PubMed ID: 37850175
    [No Abstract]   [Full Text] [Related]  

  • 14. New frontiers of retinal therapeutic intervention: a critical analysis of novel approaches.
    Nanegrungsunk O; Au A; Sarraf D; Sadda SR
    Ann Med; 2022 Dec; 54(1):1067-1080. PubMed ID: 35467460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Anodic Phase Can Facilitate Rather Than Weaken a Cathodic Phase to Activate Neurons in Biphasic-Pulse Axonal Stimulations.
    Zheng L; Feng Z; Xu Y; Yuan Y; Hu Y
    Front Neurosci; 2022; 16():823423. PubMed ID: 35368280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Resolution of Suprachoroidal-Transretinal Stimulation Estimated by Recording Single-Unit Activity From the Cat Lateral Geniculate Nucleus.
    Miyoshi T; Morimoto T; Sawai H; Fujikado T
    Front Neurosci; 2021; 15():717429. PubMed ID: 34720855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing of Newly Developed Wide-Field Dual-Array Suprachoroidal-Transretinal Stimulation Prosthesis in Dogs.
    Morimoto T; Fujikado T; Kanda H; Miyoshi T; Endo T; Nishida K; Kishima H; Saito T; Ito K; Ozawa M; Nishida K
    Transl Vis Sci Technol; 2021 Mar; 10(3):13. PubMed ID: 34003947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contemporary approaches to visual prostheses.
    Mirochnik RM; Pezaris JS
    Mil Med Res; 2019 Jun; 6(1):19. PubMed ID: 31167653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina.
    Haselier C; Biswas S; Rösch S; Thumann G; Müller F; Walter P
    PLoS One; 2017; 12(12):e0190048. PubMed ID: 29281713
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.