These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 14744988)
1. The Na+ channel inactivation gate is a molecular complex: a novel role of the COOH-terminal domain. Motoike HK; Liu H; Glaaser IW; Yang AS; Tateyama M; Kass RS J Gen Physiol; 2004 Feb; 123(2):155-65. PubMed ID: 14744988 [TBL] [Abstract][Full Text] [Related]
2. A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. McPhee JC; Ragsdale DS; Scheuer T; Catterall WA J Biol Chem; 1995 May; 270(20):12025-34. PubMed ID: 7744852 [TBL] [Abstract][Full Text] [Related]
3. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. McPhee JC; Ragsdale DS; Scheuer T; Catterall WA J Biol Chem; 1998 Jan; 273(2):1121-9. PubMed ID: 9422778 [TBL] [Abstract][Full Text] [Related]
4. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Catterall WA Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834 [TBL] [Abstract][Full Text] [Related]
5. A peptide segment critical for sodium channel inactivation functions as an inactivation gate in a potassium channel. Patton DE; West JW; Catterall WA; Goldin AL Neuron; 1993 Nov; 11(5):967-74. PubMed ID: 8240817 [TBL] [Abstract][Full Text] [Related]
6. Molecular determinants for modulation of persistent sodium current by G-protein betagamma subunits. Mantegazza M; Yu FH; Powell AJ; Clare JJ; Catterall WA; Scheuer T J Neurosci; 2005 Mar; 25(13):3341-9. PubMed ID: 15800189 [TBL] [Abstract][Full Text] [Related]
7. A1152D mutation of the Na+ channel causes paramyotonia congenita and emphasizes the role of DIII/S4-S5 linker in fast inactivation. Bouhours M; Luce S; Sternberg D; Willer JC; Fontaine B; Tabti N J Physiol; 2005 Jun; 565(Pt 2):415-27. PubMed ID: 15790667 [TBL] [Abstract][Full Text] [Related]
8. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation. Sheets MF; Hanck DA J Physiol; 2005 Feb; 563(Pt 1):83-93. PubMed ID: 15576449 [TBL] [Abstract][Full Text] [Related]
9. A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating. Wehrens XH; Rossenbacker T; Jongbloed RJ; Gewillig M; Heidbüchel H; Doevendans PA; Vos MA; Wellens HJ; Kass RS Hum Mutat; 2003 May; 21(5):552. PubMed ID: 12673799 [TBL] [Abstract][Full Text] [Related]
10. Implication of the C-terminal region of the alpha-subunit of voltage-gated sodium channels in fast inactivation. Deschênes I; Trottier E; Chahine M J Membr Biol; 2001 Sep; 183(2):103-14. PubMed ID: 11562792 [TBL] [Abstract][Full Text] [Related]
11. A carboxyl-terminal hydrophobic interface is critical to sodium channel function. Relevance to inherited disorders. Glaaser IW; Bankston JR; Liu H; Tateyama M; Kass RS J Biol Chem; 2006 Aug; 281(33):24015-23. PubMed ID: 16798729 [TBL] [Abstract][Full Text] [Related]
12. Interaction between fast and ultra-slow inactivation in the voltage-gated sodium channel. Does the inactivation gate stabilize the channel structure? Hilber K; Sandtner W; Kudlacek O; Schreiner B; Glaaser I; Schütz W; Fozzard HA; Dudley SC; Todt H J Biol Chem; 2002 Oct; 277(40):37105-15. PubMed ID: 12138168 [TBL] [Abstract][Full Text] [Related]
13. Restoration of fast inactivation in an inactivation-defective human heart sodium channel by the cysteine modifying reagent benzyl-MTS: analysis of IFM-ICM mutation. Chahine M; Deschênes I; Trottier E; Chen LQ; Kallen RG Biochem Biophys Res Commun; 1997 Apr; 233(3):606-10. PubMed ID: 9168898 [TBL] [Abstract][Full Text] [Related]
14. Sodium channel inactivation in heart: a novel role of the carboxy-terminal domain. Kass RS J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S21-S25. PubMed ID: 16686678 [TBL] [Abstract][Full Text] [Related]
15. Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Eaholtz G; Scheuer T; Catterall WA Neuron; 1994 May; 12(5):1041-8. PubMed ID: 8185942 [TBL] [Abstract][Full Text] [Related]
16. Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. Kellenberger S; West JW; Scheuer T; Catterall WA J Gen Physiol; 1997 May; 109(5):589-605. PubMed ID: 9154906 [TBL] [Abstract][Full Text] [Related]
17. Time-dependent block and resurgent tail currents induced by mouse beta4(154-167) peptide in cardiac Na+ channels. Wang GK; Edrich T; Wang SY J Gen Physiol; 2006 Mar; 127(3):277-89. PubMed ID: 16505148 [TBL] [Abstract][Full Text] [Related]
18. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels. Kurata HT; Wang Z; Fedida D J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918 [TBL] [Abstract][Full Text] [Related]
19. Two types of modified cardiac Na+ channels after cytosolic interventions at the alpha-subunit capable of removing Na+ inactivation. Benz I; Beck W; Kraas W; Stoll D; Jung G; Kohlhardt M Eur Biophys J; 1997; 25(3):189-200. PubMed ID: 9037754 [TBL] [Abstract][Full Text] [Related]
20. The S4-S5 linker couples voltage sensing and activation of pacemaker channels. Chen J; Mitcheson JS; Tristani-Firouzi M; Lin M; Sanguinetti MC Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11277-82. PubMed ID: 11553787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]