These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 14745097)

  • 1. Effects of nitric oxide on proprioceptive signaling.
    Schuppe H; Araki M; Aonuma H; Nagayama T; Newland PL
    Zoolog Sci; 2004 Jan; 21(1):1-5. PubMed ID: 14745097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic inputs onto spiking local interneurons in crayfish are depressed by nitric oxide.
    Aonuma H; Newland PL
    J Neurobiol; 2002 Aug; 52(2):144-55. PubMed ID: 12124752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing actions of nitric oxide on synaptic inputs of identified interneurones in the central nervous system of the crayfish.
    Aonuma H; Newland PL
    J Exp Biol; 2001 Apr; 204(Pt 7):1319-32. PubMed ID: 11249841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergent chemical and electrical synaptic inputs from proprioceptive afferents onto an identified intersegmental interneuron in the crayfish.
    Nagayama T; Aonuma H; Newland PL
    J Neurophysiol; 1997 May; 77(5):2826-30. PubMed ID: 9163396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide modulates presynaptic afferent depolarization of mechanosensory neurons.
    Schuppe H; Newland PL
    J Neurobiol; 2004 Jun; 59(3):331-42. PubMed ID: 15146549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of NADPH-diaphorase-positive ascending interneurones in the crayfish terminal abdominal ganglion.
    Schuppe H; Aonuma H; Newland PL
    Cell Tissue Res; 2001 Jul; 305(1):135-46. PubMed ID: 11512666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic and glutamatergic inhibition of nonspiking local interneurons in the terminal abdominal ganglion of the crayfish.
    Nagayama T
    J Exp Zool A Comp Exp Biol; 2005 Jan; 303(1):66-75. PubMed ID: 15612007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAergic and non-GABAergic spiking interneurons of local and intersegmental groups in the crayfish terminal abdominal ganglion.
    Aonuma H; Nagayama T
    J Comp Neurol; 1999 Aug; 410(4):677-88. PubMed ID: 10398056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IP3-mediated octopamine-induced synaptic enhancement of crayfish LG neurons.
    Araki M; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Aug; 198(8):607-15. PubMed ID: 22622466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiology and morphology of spiking local interneurons in the terminal abdominal ganglion of the crayfish.
    Nagayama T; Isogai Y; Namba H
    J Comp Neurol; 1993 Nov; 337(4):584-99. PubMed ID: 8288772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic expression patterns of allatostatin-like peptide, FMRFamide-related peptide, orcokinin, tachykinin-related peptide, and SIFamide in the olfactory system of crayfish Procambarus clarkii.
    Yasuda-Kamatani Y; Yasuda A
    J Comp Neurol; 2006 May; 496(1):135-47. PubMed ID: 16528723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of glutamatergic immunoreactive neurons in the terminal abdominal ganglion of the crayfish.
    Nagayama T; Kimura K; Araki M; Aonuma H; Newland PL
    J Comp Neurol; 2004 Jun; 474(1):123-35. PubMed ID: 15156582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local commissural interneurons integrate information from intersegmental coordinating interneurons.
    Mulloney B; Hall WM
    J Comp Neurol; 2003 Nov; 466(3):366-76. PubMed ID: 14556294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of statocyst input to local interneurons by behavioral condition in the crayfish brain.
    Hama N; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Aug; 191(8):747-59. PubMed ID: 15856256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central inhibition of an identified mechanosensory interneuron in the crayfish.
    Wilkens LA; Marzelli GA
    J Neurobiol; 1979 May; 10(3):247-54. PubMed ID: 458437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons.
    Fino E; Paille V; Deniau JM; Venance L
    Neuroscience; 2009 Jun; 160(4):744-54. PubMed ID: 19303912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of spiking local interneurons in shaping the receptive fields of intersegmental interneurons in the locust.
    Laurent G
    J Neurosci; 1987 Sep; 7(9):2977-89. PubMed ID: 3625282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide is necessary for long-term facilitation of synaptic responses and for development of context memory in terrestrial snails.
    Korshunova TA; Balaban PM
    Neuroscience; 2014 Apr; 266():127-35. PubMed ID: 24560987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analyses of anatomical and electrotonic structures of crayfish nonspiking interneurons by three-dimensional morphometry.
    Hikosaka R; Takahata M
    J Comp Neurol; 1998 Mar; 392(3):373-89. PubMed ID: 9511924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleus accumbens nitric oxide immunoreactive interneurons receive nitric oxide and ventral subicular afferents in rats.
    French SJ; Ritson GP; Hidaka S; Totterdell S
    Neuroscience; 2005; 135(1):121-31. PubMed ID: 16084659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.