BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14745441)

  • 1. Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing.
    Tang XD; Garcia ML; Heinemann SH; Hoshi T
    Nat Struct Mol Biol; 2004 Feb; 11(2):171-8. PubMed ID: 14745441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels.
    Tang XD; Xu R; Reynolds MF; Garcia ML; Heinemann SH; Hoshi T
    Nature; 2003 Oct; 425(6957):531-5. PubMed ID: 14523450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The beta 1 subunit of L-type voltage-gated Ca2+ channels independently binds to and inhibits the gating of large-conductance Ca2+-activated K+ channels.
    Zou S; Jha S; Kim EY; Dryer SE
    Mol Pharmacol; 2008 Feb; 73(2):369-78. PubMed ID: 17989350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine oxidation and rundown of large-conductance Ca2+-dependent K+ channels.
    Zhang G; Xu R; Heinemann SH; Hoshi T
    Biochem Biophys Res Commun; 2006 Apr; 342(4):1389-95. PubMed ID: 16516848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slo1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels.
    Qian X; Nimigean CM; Niu X; Moss BL; Magleby KL
    J Gen Physiol; 2002 Dec; 120(6):829-43. PubMed ID: 12451052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BK channel openers inhibit ROS production of isolated rat brain mitochondria.
    Kulawiak B; Kudin AP; Szewczyk A; Kunz WS
    Exp Neurol; 2008 Aug; 212(2):543-7. PubMed ID: 18572168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human podocytes possess a stretch-sensitive, Ca2+-activated K+ channel: potential implications for the control of glomerular filtration.
    Morton MJ; Hutchinson K; Mathieson PW; Witherden IR; Saleem MA; Hunter M
    J Am Soc Nephrol; 2004 Dec; 15(12):2981-7. PubMed ID: 15579500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rat GnRH neurons exhibit large conductance voltage- and Ca2+-Activated K+ (BK) currents and express BK channel mRNAs.
    Hiraizumi Y; Nishimura I; Ishii H; Tanaka N; Takeshita T; Sakuma Y; Kato M
    J Physiol Sci; 2008 Feb; 58(1):21-9. PubMed ID: 18177544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel alpha-KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore.
    Giangiacomo KM; Becker J; Garsky C; Schmalhofer W; Garcia ML; Mullmann TJ
    Cell Biochem Biophys; 2008; 52(1):47-58. PubMed ID: 18815746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) opens large-conductance Ca2+-activated K+ channels and relaxes vascular smooth muscle.
    Gessner G; Heller R; Hoshi T; Heinemann SH
    Eur J Pharmacol; 2007 Jan; 555(2-3):185-93. PubMed ID: 17134694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of large-conductance Ca(2+)-activated K(+) channel alpha-subunits in mouse cardiomyocytes.
    Ko JH; Ibrahim MA; Park WS; Ko EA; Kim N; Warda M; Lim I; Bang H; Han J
    Biochem Biophys Res Commun; 2009 Nov; 389(1):74-9. PubMed ID: 19699717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Information of charybdotoxin blockade in the large conductance calcium-activated potassium channel.
    Qiu S; Yi H; Liu H; Cao Z; Wu Y; Li W
    J Chem Inf Model; 2009 Jul; 49(7):1831-8. PubMed ID: 19499912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of large-conductance calcium-activated potassium channels by puerarin: the underlying mechanism of puerarin-mediated vasodilation.
    Sun XH; Ding JP; Li H; Pan N; Gan L; Yang XL; Xu HB
    J Pharmacol Exp Ther; 2007 Oct; 323(1):391-7. PubMed ID: 17652634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-sensitive oxonol dyes are novel large-conductance Ca2+-activated K+ channel activators selective for beta1 and beta4 but not for beta2 subunits.
    Morimoto T; Sakamoto K; Sade H; Ohya S; Muraki K; Imaizumi Y
    Mol Pharmacol; 2007 Apr; 71(4):1075-88. PubMed ID: 17209121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents.
    Hercule HC; Salanova B; Essin K; Honeck H; Falck JR; Sausbier M; Ruth P; Schunck WH; Luft FC; Gollasch M
    Exp Physiol; 2007 Nov; 92(6):1067-76. PubMed ID: 17675416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular BKology: the study of splicing and dicing.
    Fury M; Marx SO; Marks AR
    Sci STKE; 2002 Mar; 2002(123):pe12. PubMed ID: 11891347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The beta1 subunit enhances oxidative regulation of large-conductance calcium-activated K+ channels.
    Santarelli LC; Chen J; Heinemann SH; Hoshi T
    J Gen Physiol; 2004 Oct; 124(4):357-70. PubMed ID: 15452197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural modulators of large-conductance calcium-activated potassium channels.
    Nardi A; Calderone V; Chericoni S; Morelli I
    Planta Med; 2003 Oct; 69(10):885-92. PubMed ID: 14648389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca(2+)-activated K+ channel inhibition by reactive oxygen species.
    Soto MA; González C; Lissi E; Vergara C; Latorre R
    Am J Physiol Cell Physiol; 2002 Mar; 282(3):C461-71. PubMed ID: 11832330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interacting effects of N-terminal variation and strex exon splicing on slo potassium channel regulation by calcium, phosphorylation, and oxidation.
    Erxleben C; Everhart AL; Romeo C; Florance H; Bauer MB; Alcorta DA; Rossie S; Shipston MJ; Armstrong DL
    J Biol Chem; 2002 Jul; 277(30):27045-52. PubMed ID: 12016222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.