BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 14747150)

  • 1. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum.
    Zhu G; Li Y; Cai X; Millership JJ; Marchewka MJ; Keithly JS
    Mol Biochem Parasitol; 2004 Mar; 134(1):127-35. PubMed ID: 14747150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum.
    Zhu G; Marchewka MJ; Woods KM; Upton SJ; Keithly JS
    Mol Biochem Parasitol; 2000 Feb; 105(2):253-60. PubMed ID: 10693747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reductase domain in a Type I fatty acid synthase from the apicomplexan Cryptosporidium parvum: restricted substrate preference towards very long chain fatty acyl thioesters.
    Zhu G; Shi X; Cai X
    BMC Biochem; 2010 Nov; 11():46. PubMed ID: 21092192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase.
    Zhu G; LaGier MJ; Stejskal F; Millership JJ; Cai X; Keithly JS
    Gene; 2002 Sep; 298(1):79-89. PubMed ID: 12406578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and Biochemical Characterization of a Type II Thioesterase From the Zoonotic Protozoan Parasite
    Guo F; Zhang H; Eltahan R; Zhu G
    Front Cell Infect Microbiol; 2019; 9():199. PubMed ID: 31231619
    [No Abstract]   [Full Text] [Related]  

  • 6. Current progress in the fatty acid metabolism in Cryptosporidium parvum.
    Zhu G
    J Eukaryot Microbiol; 2004; 51(4):381-8. PubMed ID: 15352319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of the acyl-[acyl carrier protein] ligase in the Cryptosporidium parvum giant polyketide synthase.
    Fritzler JM; Zhu G
    Int J Parasitol; 2007 Mar; 37(3-4):307-16. PubMed ID: 17161840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptosporidium parvum long-chain fatty acid elongase.
    Fritzler JM; Millership JJ; Zhu G
    Eukaryot Cell; 2007 Nov; 6(11):2018-28. PubMed ID: 17827345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei.
    Tang L; Yoon YJ; Choi CY; Hutchinson CR
    Gene; 1998 Aug; 216(2):255-65. PubMed ID: 9729415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro.
    Rangan VS; Joshi AK; Smith S
    Biochemistry; 2001 Sep; 40(36):10792-9. PubMed ID: 11535054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional organization of the animal fatty acid synthase.
    Smith S; Witkowski A; Joshi AK
    Prog Lipid Res; 2003 Jul; 42(4):289-317. PubMed ID: 12689621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.
    Oyola-Robles D; Rullán-Lind C; Carballeira NM; Baerga-Ortiz A
    Enzyme Microb Technol; 2014 Feb; 55():133-9. PubMed ID: 24411456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating effect of β-ketoacyl synthase domain of fatty acid synthase on fatty acyl chain length in de novo fatty acid synthesis.
    Cui W; Liang Y; Tian W; Ji M; Ma X
    Biochim Biophys Acta; 2016 Mar; 1861(3):149-55. PubMed ID: 26680361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction, expression, and characterization of a mutated animal fatty acid synthase deficient in the dehydrase function.
    Joshi AK; Smith S
    J Biol Chem; 1993 Oct; 268(30):22508-13. PubMed ID: 8226759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional differentiation and selective inactivation of multiple Saccharomyces cerevisiae genes involved in very-long-chain fatty acid synthesis.
    Rössler H; Rieck C; Delong T; Hoja U; Schweizer E
    Mol Genet Genomics; 2003 May; 269(2):290-8. PubMed ID: 12684876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression, purification and characterization of a hexahistidine-tagged recombinant extended nucleotide-binding domain 1 (NBD1) of the Cryptosporidium parvum CpABC3 for rational drug design.
    Lawton P; Pélandakis M; Pétavy AF; Walchshofer N
    Mol Biochem Parasitol; 2007 Mar; 152(1):101-7. PubMed ID: 17222922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of S-adenosylmethionine synthetase in Cryptosporidium parvum (Apicomplexa).
    Slapeta J; Stejskal F; Keithly JS
    FEMS Microbiol Lett; 2003 Aug; 225(2):271-7. PubMed ID: 12951252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Gene Expression and Protein Localization of Cryptosporidium parvum Fatty Acyl-CoA Synthetase Isoforms.
    Guo F; Zhang H; Payne HR; Zhu G
    J Eukaryot Microbiol; 2016; 63(2):233-46. PubMed ID: 26411755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a heavy metal ATPase from the apicomplexan Cryptosporidium parvum.
    LaGier MJ; Zhu G; Keithly JS
    Gene; 2001 Mar; 266(1-2):25-34. PubMed ID: 11290416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amelioration of Cryptosporidium parvum infection in vitro and in vivo by targeting parasite fatty acyl-coenzyme A synthetases.
    Guo F; Zhang H; Fritzler JM; Rider SD; Xiang L; McNair NN; Mead JR; Zhu G
    J Infect Dis; 2014 Apr; 209(8):1279-87. PubMed ID: 24273180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.