These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 14747359)

  • 1. Temperature dependency of molecular mobility in preserved seeds.
    Walters C
    Biophys J; 2004 Feb; 86(2):1253-8. PubMed ID: 14747359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longevity of cryogenically stored seeds.
    Walters C; Wheeler L; Stanwood PC
    Cryobiology; 2004 Jun; 48(3):229-44. PubMed ID: 15157772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses.
    Zhou D; Grant DJ; Zhang GG; Law D; Schmitt EA
    J Pharm Sci; 2007 Jan; 96(1):71-83. PubMed ID: 17031846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems.
    Ballesteros D; Walters C
    Plant J; 2011 Nov; 68(4):607-19. PubMed ID: 21831210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility.
    Bhugra C; Rambhatla S; Bakri A; Duddu SP; Miller DP; Pikal MJ; Lechuga-Ballesteros D
    J Pharm Sci; 2007 May; 96(5):1258-69. PubMed ID: 17455303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen.
    Buitink J; Claessens MM; Hemminga MA; Hoekstra FA
    Plant Physiol; 1998 Oct; 118(2):531-41. PubMed ID: 9765538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content.
    Vertucci CW; Leopold AC
    Plant Physiol; 1987; 84(4):1038-43. PubMed ID: 11539675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictions of onset of crystallization from experimental relaxation times I-correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition.
    Bhugra C; Shmeis R; Krill SL; Pikal MJ
    Pharm Res; 2006 Oct; 23(10):2277-90. PubMed ID: 16933094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longevity of Preserved Germplasm: The Temperature Dependency of Aging Reactions in Glassy Matrices of Dried Fern Spores.
    Ballesteros D; Hill LM; Lynch RT; Pritchard HW; Walters C
    Plant Cell Physiol; 2019 Feb; 60(2):376-392. PubMed ID: 30398653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water binding in legume seeds.
    Vertucci CW; Leopold AC
    Plant Physiol; 1987; 85(1):224-31. PubMed ID: 11539705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass transition and enthalpy relaxation of amorphous lactose glass.
    Haque MK; Kawai K; Suzuki T
    Carbohydr Res; 2006 Aug; 341(11):1884-9. PubMed ID: 16709405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of glassy-state dynamics from the width of the glass transition: results from theoretical simulation of differential scanning calorimetry and comparisons with experiment.
    Pikal MJ; Chang LL; Tang XC
    J Pharm Sci; 2004 Apr; 93(4):981-94. PubMed ID: 14999734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.
    Buehler MG; Kindle ML; Carter BP
    J Food Sci; 2015 Jun; 80(6):E1243-52. PubMed ID: 25944358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of dynamics in complex lyophilized formulations: I. Comparison of relaxation times measured by isothermal calorimetry with data estimated from the width of the glass transition temperature region.
    Chieng N; Mizuno M; Pikal M
    Eur J Pharm Biopharm; 2013 Oct; 85(2):189-96. PubMed ID: 23608636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures.
    Hancock BC; Shamblin SL; Zografi G
    Pharm Res; 1995 Jun; 12(6):799-806. PubMed ID: 7667182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A calorimetric method to estimate molecular mobility of amorphous solids at relatively low temperatures.
    Mao C; Prasanth Chamarthy S; Byrn SR; Pinal R
    Pharm Res; 2006 Oct; 23(10):2269-76. PubMed ID: 16933097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mobility in the cytoplasm: an approach to describe and predict lifespan of dry germplasm.
    Buitink J; Leprince O; Hemminga MA; Hoekstra FA
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2385-90. PubMed ID: 10681458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between molecular mobility and physical stability of amorphous itraconazole.
    Bhardwaj SP; Arora KK; Kwong E; Templeton A; Clas SD; Suryanarayanan R
    Mol Pharm; 2013 Feb; 10(2):694-700. PubMed ID: 23198856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mobility in liquid and glassy states of telmisartan (TEL) studied by broadband dielectric spectroscopy.
    Adrjanowicz K; Wojnarowska Z; Wlodarczyk P; Kaminski K; Paluch M; Mazgalski J
    Eur J Pharm Sci; 2009 Nov; 38(4):395-404. PubMed ID: 19766186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.