BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 14747515)

  • 1. The role of muscarinic and nicotinic cholinergic neurotransmission in aversive conditioning: comparing pavlovian fear conditioning and inhibitory avoidance.
    Tinsley MR; Quinn JJ; Fanselow MS
    Learn Mem; 2004; 11(1):35-42. PubMed ID: 14747515
    [No Abstract]   [Full Text] [Related]  

  • 2. The interactive effects of nicotinic and muscarinic cholinergic receptor inhibition on fear conditioning in young and aged C57BL/6 mice.
    Feiro O; Gould TJ
    Pharmacol Biochem Behav; 2005 Feb; 80(2):251-62. PubMed ID: 15680178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appetitive-aversive interactions in Pavlovian fear conditioning.
    Nasser HM; McNally GP
    Behav Neurosci; 2012 Jun; 126(3):404-22. PubMed ID: 22642885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine activity in the nucleus accumbens modulates blocking in fear conditioning.
    Iordanova MD; Westbrook RF; Killcross AS
    Eur J Neurosci; 2006 Dec; 24(11):3265-70. PubMed ID: 17156387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo.
    Li Z; Zhou Q; Li L; Mao R; Wang M; Peng W; Dong Z; Xu L; Cao J
    Hippocampus; 2005; 15(6):815-24. PubMed ID: 16015621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Correlates of potentials evoked by motivational processes in aversive conditioning].
    Karmos G; Csépe V; Molnár M
    Z Psychol Z Angew Psychol; 1984; (Suppl 6):9-30. PubMed ID: 6152864
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of muscarinic M1 receptors in inhibitory avoidance and contextual fear conditioning.
    Soares JC; Fornari RV; Oliveira MG
    Neurobiol Learn Mem; 2006 Sep; 86(2):188-96. PubMed ID: 16647280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal basal forebrain cholinergic hypofunction affects ultrasonic vocalizations and fear conditioning responses in preweaning rats.
    Ricceri L; Cutuli D; Venerosi A; Scattoni ML; Calamandrei G
    Behav Brain Res; 2007 Oct; 183(1):111-7. PubMed ID: 17624452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amygdalar unit activity during three learning tasks: eyeblink classical conditioning, Pavlovian fear conditioning, and signaled avoidance conditioning.
    Rorick-Kehn LM; Steinmetz JE
    Behav Neurosci; 2005 Oct; 119(5):1254-76. PubMed ID: 16300433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-dependent effects of conditioning on cholinergic and vasopressin systems in the rat suprachiasmatic nucleus.
    Biemans BA; Van der Zee EA; Daan S
    Biol Chem; 2003 May; 384(5):729-36. PubMed ID: 12817469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Roman High- and Low-Avoidance rat strains differ in fear-potentiated startle and classical aversive conditioning.
    López-Aumatell R; Blázquez G; Gil L; Aguilar R; Cañete T; Giménez-Llort L; Tobeña A; Fernández-Teruel A
    Psicothema; 2009 Feb; 21(1):27-32. PubMed ID: 19178852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of group I metabotropic glutamate receptors in acquisition and expression of contextual and auditory fear conditioning in rats - a comparison.
    Gravius A; Barberi C; Schäfer D; Schmidt WJ; Danysz W
    Neuropharmacology; 2006 Dec; 51(7-8):1146-55. PubMed ID: 16905160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What the amygdala does and doesn't do in aversive learning.
    Maren S
    Learn Mem; 2003; 10(5):306-8. PubMed ID: 14557601
    [No Abstract]   [Full Text] [Related]  

  • 14. Amygdaloid GABA, not glutamate neurotransmission or mRNA transcription controls footshock-associated fear arousal in the acoustic startle paradigm.
    Van Nobelen M; Kokkinidis L
    Neuroscience; 2006; 137(2):707-16. PubMed ID: 16289581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace fear conditioning: a role for context?
    Marchand AR; Luck D; Di Scala G
    Arch Ital Biol; 2004 May; 142(3):251-63. PubMed ID: 15260379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of dopaminergic mechanisms in the nucleus accumbens core and shell subregions in the expression of fear conditioning.
    Martinez RC; Oliveira AR; Macedo CE; Molina VA; Brandão ML
    Neurosci Lett; 2008 Dec; 446(2-3):112-6. PubMed ID: 18835326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic modulation of trace conditioning trained in serial compound: A developmental analysis.
    Hunt PS; Barnet RC; Shea ME; Baker EM
    Neurobiol Learn Mem; 2006 Nov; 86(3):311-21. PubMed ID: 16774840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amygdala, long-term potentiation, and fear conditioning.
    Dityatev AE; Bolshakov VY
    Neuroscientist; 2005 Feb; 11(1):75-88. PubMed ID: 15632280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of neuronal nicotinic receptors in the effects of nicotine and ethanol on contextual fear conditioning.
    Wehner JM; Keller JJ; Keller AB; Picciotto MR; Paylor R; Booker TK; Beaudet A; Heinemann SF; Balogh SA
    Neuroscience; 2004; 129(1):11-24. PubMed ID: 15489024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer's disease.
    Goto Y; Niidome T; Hongo H; Akaike A; Kihara T; Sugimoto H
    Eur J Pharmacol; 2008 Mar; 583(1):84-91. PubMed ID: 18282567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.