These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 14747515)

  • 41. Differential contribution of dorsal and ventral hippocampus to trace and delay fear conditioning.
    Esclassan F; Coutureau E; Di Scala G; Marchand AR
    Hippocampus; 2009 Jan; 19(1):33-44. PubMed ID: 18683846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of amygdaloid cholinergic mediation of passive avoidance learning in the rat. I. Muscarinic mechanisms.
    Duméry V; Blozovski D
    Exp Brain Res; 1987; 67(1):61-9. PubMed ID: 3622683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stress and re-stress increases conditioned taste aversion learning in rats: possible frontal cortical and hippocampal muscarinic receptor involvement.
    Brand L; Groenewald I; Stein DJ; Wegener G; Harvey BH
    Eur J Pharmacol; 2008 May; 586(1-3):205-11. PubMed ID: 18439577
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of muscarinic and nicotinic cholinergic receptors in an experimental model of epilepsy-induced analgesia.
    de Freitas RL; de Oliveira RC; de Carvalho AD; Felippotti TT; Bassi GS; Elias-Filho DH; Coimbra NC
    Pharmacol Biochem Behav; 2004 Oct; 79(2):367-76. PubMed ID: 15501314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impaired passive avoidance learning in mice lacking central neuronal nicotinic acetylcholine receptors.
    Marubio LM; Paylor R
    Neuroscience; 2004; 129(3):575-82. PubMed ID: 15541879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The lateral amygdala processes the value of conditioned and unconditioned aversive stimuli.
    Blair HT; Sotres-Bayon F; Moita MA; Ledoux JE
    Neuroscience; 2005; 133(2):561-9. PubMed ID: 15878802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sex-selective effects of neonatal isolation on fear conditioning and foot shock sensitivity.
    Kosten TA; Miserendino MJ; Bombace JC; Lee HJ; Kim JJ
    Behav Brain Res; 2005 Feb; 157(2):235-44. PubMed ID: 15639174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reinstatement of conditioned responses in human differential fear conditioning.
    Dirikx T; Hermans D; Vansteenwegen D; Baeyens F; Eelen P
    J Behav Ther Exp Psychiatry; 2007 Sep; 38(3):237-51. PubMed ID: 17475209
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lack of phenotype for LTP and fear conditioning learning in calpain 1 knock-out mice.
    Grammer M; Kuchay S; Chishti A; Baudry M
    Neurobiol Learn Mem; 2005 Nov; 84(3):222-7. PubMed ID: 16150618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extinction deficit and fear reinstatement after electrical stimulation of the amygdala: implications for kindling-associated fear and anxiety.
    Kellett J; Kokkinidis L
    Neuroscience; 2004; 127(2):277-87. PubMed ID: 15262319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning.
    Chess AC; Landers AM; Bucci DJ
    Behav Brain Res; 2009 Aug; 201(2):325-31. PubMed ID: 19428652
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of chlordiazepoxide on single-unit activity in the septal region of the freely moving rat: aversive vs. non-aversive contexts.
    Thomas E; Strickland CE; Yadin E; Burock DA
    Pharmacol Biochem Behav; 2005 Jan; 80(1):151-9. PubMed ID: 15652391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporal-difference prediction errors and Pavlovian fear conditioning: role of NMDA and opioid receptors.
    Cole S; McNally GP
    Behav Neurosci; 2007 Oct; 121(5):1043-52. PubMed ID: 17907835
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Release of glutamate by the embryonic spinal motoneurons of rat positively regulated by acetylcholine through the nicotinic and muscarinic receptors.
    Barthélémy-Requin M; Bévengut M; Portalier P; Ternaux JP
    Neurochem Int; 2006 Nov; 49(6):584-92. PubMed ID: 16806585
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amygdala inhibitory circuits and the control of fear memory.
    Ehrlich I; Humeau Y; Grenier F; Ciocchi S; Herry C; Lüthi A
    Neuron; 2009 Jun; 62(6):757-71. PubMed ID: 19555645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm.
    LeDoux JE; Moscarello J; Sears R; Campese V
    Mol Psychiatry; 2017 Jan; 22(1):24-36. PubMed ID: 27752080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of acetylcholine in nitric oxide production in the salamander retina.
    Cimini BA; Strang CE; Wotring VE; Keyser KT; Eldred WD
    J Comp Neurol; 2008 Apr; 507(6):1952-63. PubMed ID: 18273886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Central and basolateral amygdala neurons crash the aversive conditioning party: Theoretical comment on Rorick-Kehn and Steinmetz (2005).
    Maren S
    Behav Neurosci; 2005 Oct; 119(5):1406-10. PubMed ID: 16300448
    [No Abstract]   [Full Text] [Related]  

  • 59. Dissociating space and trace in dorsal and ventral hippocampus.
    Czerniawski J; Yoon T; Otto T
    Hippocampus; 2009 Jan; 19(1):20-32. PubMed ID: 18651617
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Memory consolidation of Pavlovian fear conditioning requires nitric oxide signaling in the lateral amygdala.
    Schafe GE; Bauer EP; Rosis S; Farb CR; Rodrigues SM; LeDoux JE
    Eur J Neurosci; 2005 Jul; 22(1):201-11. PubMed ID: 16029210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.