These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 14747714)

  • 21. Anti-TRAP protein from Bacillus subtilis: crystallization and internal symmetry.
    Shevtsov MB; Chen Y; Gollnick P; Antson AA
    Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1311-4. PubMed ID: 15213402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallization of NAD+ synthetase from Bacillus subtilis.
    Rizzi M; Nessi C; Bolognesi M; Coda A; Galizzi A
    Proteins; 1996 Oct; 26(2):236-8. PubMed ID: 8916230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of YfiR, an unusual TetR/CamR-type putative transcriptional regulator from Bacillus subtilis.
    Rajan SS; Yang X; Shuvalova L; Collart F; Anderson WF
    Proteins; 2006 Oct; 65(1):255-7. PubMed ID: 16862575
    [No Abstract]   [Full Text] [Related]  

  • 24. Crystallization of the oligopeptide-binding protein AppA from Bacillus subtilis.
    Wright L; Blagova E; Levdikov VM; Brannigan JA; Pattenden RJ; Chambers J; Wilkinson AJ
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):175-7. PubMed ID: 14684921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex.
    Wang E; Bauer MC; Rogstam A; Linse S; Logan DT; von Wachenfeldt C
    Mol Microbiol; 2008 Jul; 69(2):466-78. PubMed ID: 18485070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of a novel gene, gluP, is essential for normal Bacillus subtilis cell division and contributes to glucose export.
    Mesak LR; Mesak FM; Dahl MK
    BMC Microbiol; 2004 Mar; 4():13. PubMed ID: 15050034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolated epsilon subunit of Bacillus subtilis F1-ATPase binds ATP.
    Kato-Yamada Y
    FEBS Lett; 2005 Dec; 579(30):6875-8. PubMed ID: 16337201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Isolation and properties of B. subtilis DNA-binding proteins inhibiting ATP-dependent deoxyribonuclease].
    Chestukhin AV; Fedchenko VI; Shemiakin MF
    Mol Biol (Mosk); 1979; 13(3):656-65. PubMed ID: 111035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification, crystallization and initial X-ray crystallographic analysis of the putative GTPase PH0525 from Pyrococcus horikoshii OT3.
    Lokanath NK; Yamamoto H; Matsunaga E; Sugahara M; Kunishima N
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Oct; 61(Pt 10):892-4. PubMed ID: 16511188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional immobilization of the small GTPase Rab6A on DNA-Gold nanoparticles by using a site-specifically attached poly(ethylene glycol) linker and thiol place-exchange reaction.
    Becker CF; Marsac Y; Hazarika P; Moser J; Goody RS; Niemeyer CM
    Chembiochem; 2007 Jan; 8(1):32-6. PubMed ID: 17121405
    [No Abstract]   [Full Text] [Related]  

  • 31. The essential GTPase YphC displays a major domain rearrangement associated with nucleotide binding.
    Muench SP; Xu L; Sedelnikova SE; Rice DW
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12359-64. PubMed ID: 16894162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle.
    Spanggord RJ; Siu F; Ke A; Doudna JA
    Nat Struct Mol Biol; 2005 Dec; 12(12):1116-22. PubMed ID: 16299512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The crystal structure of a quercetin 2,3-dioxygenase from Bacillus subtilis suggests modulation of enzyme activity by a change in the metal ion at the active site(s).
    Gopal B; Madan LL; Betz SF; Kossiakoff AA
    Biochemistry; 2005 Jan; 44(1):193-201. PubMed ID: 15628860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-ray structure of a domain-swapped dimer of Ser46-phosphorylated Crh from Bacillus subtilis.
    Chaptal V; Larivière L; Gueguen-Chaignon V; Galinier A; Nessler S; Moréra S
    Proteins; 2006 Apr; 63(1):249-51. PubMed ID: 16411239
    [No Abstract]   [Full Text] [Related]  

  • 35. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization and preliminary crystallographic analysis of deoxyuridine 5'-triphosphate nucleotidohydrolase from Bacillus subtilis.
    Persson R; Harkiolaki M; McGeehan J; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):876-8. PubMed ID: 11375514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of an essential GTPase, YsxC, from Thermotoga maritima.
    Chan KH; Wong KB
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jun; 67(Pt 6):640-6. PubMed ID: 21636901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis.
    Morimoto T; Loh PC; Hirai T; Asai K; Kobayashi K; Moriya S; Ogasawara N
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3539-3552. PubMed ID: 12427945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional analysis of 11 putative essential genes in Bacillus subtilis.
    Hunt A; Rawlins JP; Thomaides HB; Errington J
    Microbiology (Reading); 2006 Oct; 152(Pt 10):2895-2907. PubMed ID: 17005971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteins that interact with GTP during sporulation of Bacillus subtilis.
    Mitchell C; Vary JC
    J Bacteriol; 1989 Jun; 171(6):2915-8. PubMed ID: 2498282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.