BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 14749059)

  • 1. The relative importance of water and diet for uptake and subcellular distribution of cadmium in the deposit-feeding polychaete, Capitella sp. I.
    Selck H; Forbes VE
    Mar Environ Res; 2004 May; 57(4):261-79. PubMed ID: 14749059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of biotransformation on trophic transfer of the PAH, fluoranthene.
    Palmqvist A; Rasmussen LJ; Forbes VE
    Aquat Toxicol; 2006 Dec; 80(3):309-19. PubMed ID: 17084915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoupling of cadmium biokinetics and metallothionein turnover in a marine polychaete after metal exposure.
    Ng TY; Rainbow PS; Amiard-Triquet C; Amiard JC; Wang WX
    Aquat Toxicol; 2008 Aug; 89(1):47-54. PubMed ID: 18619682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake, depuration, and toxicity of dissolved and sediment-bound fluoranthene in the polychaete, Capitella sp. I.
    Selck H; Palmqvist A; Forbes VE
    Environ Toxicol Chem; 2003 Oct; 22(10):2354-63. PubMed ID: 14552000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophic transfer of Cd from larval chironomids (Chironomus riparius) exposed via sediment or waterborne routes, to zebrafish (Danio rerio): tissue-specific and subcellular comparisons.
    Béchard KM; Gillis PL; Wood CM
    Aquat Toxicol; 2008 Dec; 90(4):310-21. PubMed ID: 18950874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of trace metal uptake in the lugworm Arenicola marina.
    Casado-Martinez MC; Smith BD; Delvalls TA; Rainbow PS
    Aquat Toxicol; 2009 Apr; 92(1):9-17. PubMed ID: 19181398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling metal bioaccumulation in a deposit-feeding polychaete from labile sediment fractions and from pore water.
    Baumann Z; Fisher NS
    Sci Total Environ; 2011 Jun; 409(13):2607-15. PubMed ID: 21481438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium-handling strategies in two chronically exposed indigenous freshwater organisms--the yellow perch (Perca flavescens) and the floater mollusc (Pyganodon grandis).
    Campbell PG; Giguère A; Bonneris E; Hare L;
    Aquat Toxicol; 2005 Mar; 72(1-2):83-97. PubMed ID: 15748749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of petroleum on accumulation of copper and cadmium in the polychaete Nereis diversicolor.
    Sun FH; Zhou QX; Zhang QR
    J Environ Sci (China); 2006; 18(1):109-14. PubMed ID: 20050557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular partitioning of cadmium in the freshwater bivalve, Pyganodon grandis, after separate short-term exposures to waterborne or diet-borne metal.
    Cooper S; Hare L; Campbell PG
    Aquat Toxicol; 2010 Nov; 100(4):303-12. PubMed ID: 20843564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trophic transfer and dietary toxicity of Cd from the oligochaete to the rainbow trout.
    Ng TY; Wood CM
    Aquat Toxicol; 2008 Apr; 87(1):47-59. PubMed ID: 18281109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in PAH tolerance between Capitella species: underlying biochemical mechanisms.
    Bach L; Palmqvist A; Rasmussen LJ; Forbes VE
    Aquat Toxicol; 2005 Sep; 74(4):307-19. PubMed ID: 16023227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of acid volatile sulfides and simultaneously extracted metals on the bioavailability and toxicity of a mixture of sediment-associated Cd, Ni, and Zn to polychaetes Neanthes arenaceodentata.
    Lee JS; Lee JH
    Sci Total Environ; 2005 Feb; 338(3):229-41. PubMed ID: 15713331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout.
    Baldisserotto B; Chowdhury MJ; Wood CM
    Aquat Toxicol; 2005 Mar; 72(1-2):99-117. PubMed ID: 15748750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastrointestinal uptake and fate of cadmium in rainbow trout acclimated to sublethal dietary cadmium.
    Chowdhury MJ; McDonald DG; Wood CM
    Aquat Toxicol; 2004 Aug; 69(2):149-63. PubMed ID: 15261451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protective effect of dietary calcium against acute waterborne cadmium uptake in rainbow trout.
    Baldisserotto B; Kamunde C; Matsuo A; Wood CM
    Aquat Toxicol; 2004 Mar; 67(1):57-73. PubMed ID: 15019251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does dietary Ca protect against toxicity of a low dietborne Cd exposure to the rainbow trout?
    Ng TY; Klinck JS; Wood CM
    Aquat Toxicol; 2009 Jan; 91(1):75-86. PubMed ID: 19046779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodynamic modelling of the accumulation of Ag, Cd and Zn by the deposit-feeding polychaete Nereis diversicolor: inter-population variability and a generalised predictive model.
    Kalman J; Smith BD; Riba I; Blasco J; Rainbow PS
    Mar Environ Res; 2010 Jun; 69(5):363-73. PubMed ID: 20137808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early subcellular partitioning of cadmium in gill and liver of rainbow trout (Oncorhynchus mykiss) following low-to-near-lethal waterborne cadmium exposure.
    Kamunde C
    Aquat Toxicol; 2009 Mar; 91(4):291-301. PubMed ID: 19041144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of dissolved and sediment-bound fluoranthene in the polychaete, Capitella sp. I.
    Selck H; Palmqvist A; Forbes VE
    Environ Toxicol Chem; 2003 Oct; 22(10):2364-74. PubMed ID: 14552001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.