These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14749065)

  • 21. Trace explosive detection in aqueous samples by solid-phase extraction ion mobility spectrometry (SPE-IMS).
    Buxton TL; Harrington Pde B
    Appl Spectrosc; 2003 Feb; 57(2):223-32. PubMed ID: 14610961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physico-chemical measurements of CL-20 for environmental applications. Comparison with RDX and HMX.
    Monteil-Rivera F; Paquet L; Deschamps S; Balakrishnan VK; Beaulieu C; Hawari J
    J Chromatogr A; 2004 Jan; 1025(1):125-32. PubMed ID: 14753679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of nitroaromatic and cyclic nitramine compounds by cyclodextrin assisted capillary electrophoresis quadrupole ion trap mass spectrometry.
    Groom CA; Halasz A; Paquet L; Thiboutot S; Ampleman G; Hawari J
    J Chromatogr A; 2005 Apr; 1072(1):73-82. PubMed ID: 15881461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence quenching as an indirect detection method for nitrated explosives.
    Goodpaster JV; McGuffin VL
    Anal Chem; 2001 May; 73(9):2004-11. PubMed ID: 11354482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identity and distribution of residues of energetic compounds at army live-fire training ranges.
    Jenkins TF; Hewitt AD; Grant CL; Thiboutot S; Ampleman G; Walsh ME; Ranney TA; Ramsey CA; Palazzo AJ; Pennington JC
    Chemosphere; 2006 May; 63(8):1280-90. PubMed ID: 16352328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of explosives-related compounds using nickel catalysts.
    Fuller ME; Schaefer CE; Lowey JM
    Chemosphere; 2007 Mar; 67(3):419-27. PubMed ID: 17109928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contamination characteristics of energetic compounds in soils of two different types of military demolition range in China.
    Zhang H; Zhu Y; Wang S; Zhao S; Nie Y; Liao X; Cao H; Yin H; Liu X
    Environ Pollut; 2022 Feb; 295():118654. PubMed ID: 34890741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP
    Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental impacts of training activities at an air weapons range.
    Bordeleau G; Martel R; Ampleman G; Thiboutot S
    J Environ Qual; 2008; 37(2):308-17. PubMed ID: 18268292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol.
    Adrian NR; Arnett CM
    Chemosphere; 2007 Jan; 66(10):1849-56. PubMed ID: 17095047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-aerosol detection of explosives with a continuous flow immunosensor.
    Shriver-Lake LC; Charles PT; Kusterbeck AW
    Anal Bioanal Chem; 2003 Oct; 377(3):550-5. PubMed ID: 12920500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.
    Payne ZM; Lamichhane KM; Babcock RW; Turnbull SJ
    Environ Sci Process Impacts; 2013 Oct; 15(11):2023-9. PubMed ID: 24061783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater.
    Schaefer CE; Fuller ME; Condee CW; Lowey JM; Hatzinger PB
    J Contam Hydrol; 2007 Jan; 89(3-4):231-50. PubMed ID: 17055109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers.
    Ahmad F; Schnitker SP; Newell CJ
    J Contam Hydrol; 2007 Feb; 90(1-2):1-20. PubMed ID: 17067719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The determination of nitroaromatics and nitramines in ground and drinking water by wide-bore capillary gas chromatography.
    Hable M; Stern C; Asowata C; Williams K
    J Chromatogr Sci; 1991 Apr; 29(4):131-5. PubMed ID: 1874908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil.
    Walsh ME; Ramsey CA; Jenkins TF
    Chemosphere; 2002 Dec; 49(10):1267-73. PubMed ID: 12489723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TNT and RDX degradation and extraction from contaminated soil using subcritical water.
    Islam MN; Shin MS; Jo YT; Park JH
    Chemosphere; 2015 Jan; 119():1148-1152. PubMed ID: 25460755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil.
    Robidoux PY; Hawari J; Bardai G; Paquet L; Ampleman G; Thiboutot S; Sunahara GI
    Arch Environ Contam Toxicol; 2002 Nov; 43(4):379-88. PubMed ID: 12399908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds.
    Hilmi A; Luong JH
    Electrophoresis; 2000 Apr; 21(7):1395-404. PubMed ID: 10826686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.