BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 14749500)

  • 21. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate.
    Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T
    J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II.
    Larochelle S; Amat R; Glover-Cutter K; Sansó M; Zhang C; Allen JJ; Shokat KM; Bentley DL; Fisher RP
    Nat Struct Mol Biol; 2012 Nov; 19(11):1108-15. PubMed ID: 23064645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases.
    Bowman EA; Kelly WG
    Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription.
    Nekhai S; Zhou M; Fernandez A; Lane WS; Lamb NJ; Brady J; Kumar A
    Biochem J; 2002 Jun; 364(Pt 3):649-57. PubMed ID: 12049628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that two Pcl-like cyclins control Cdk9 activity during cell differentiation in Aspergillus nidulans asexual development.
    Kempf C; Bathe F; Fischer R
    Eukaryot Cell; 2013 Jan; 12(1):23-36. PubMed ID: 23104571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation.
    Devaiah BN; Singer DS
    J Biol Chem; 2012 Nov; 287(46):38755-66. PubMed ID: 23027873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular control of gene expression by T-type cyclin/CDK9 complexes.
    Garriga J; Graña X
    Gene; 2004 Aug; 337():15-23. PubMed ID: 15276198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription.
    Sabò A; Lusic M; Cereseto A; Giacca M
    Mol Cell Biol; 2008 Apr; 28(7):2201-12. PubMed ID: 18250157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upregulation of cyclin T1/CDK9 complexes during T cell activation.
    Garriga J; Peng J; Parreño M; Price DH; Henderson EE; Graña X
    Oncogene; 1998 Dec; 17(24):3093-102. PubMed ID: 9872325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription.
    Hoque M; Young TM; Lee CG; Serrero G; Mathews MB; Pe'ery T
    Mol Cell Biol; 2003 Mar; 23(5):1688-702. PubMed ID: 12588988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.
    Bartkowiak B; Liu P; Phatnani HP; Fuda NJ; Cooper JJ; Price DH; Adelman K; Lis JT; Greenleaf AL
    Genes Dev; 2010 Oct; 24(20):2303-16. PubMed ID: 20952539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure.
    Sano M; Wang SC; Shirai M; Scaglia F; Xie M; Sakai S; Tanaka T; Kulkarni PA; Barger PM; Youker KA; Taffet GE; Hamamori Y; Michael LH; Craigen WJ; Schneider MD
    EMBO J; 2004 Sep; 23(17):3559-69. PubMed ID: 15297879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G1 cyclins are involved in the mechanism of cardiac myocyte hypertrophy induced by angiotensin II.
    Nozato T; Ito H; Tamamori M; Adachi S; Abe S; Marumo F; Hiroe M
    Jpn Circ J; 2000 Aug; 64(8):595-601. PubMed ID: 10952156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The carboxyl-terminal domain of RNA polymerase II is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1.
    Durand LO; Advani SJ; Poon AP; Roizman B
    J Virol; 2005 Jun; 79(11):6757-62. PubMed ID: 15890914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms controlling CDK9 activity.
    Marshall RM; Grana X
    Front Biosci; 2006 Sep; 11():2598-613. PubMed ID: 16720337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA polymerase II C-terminal heptarepeat domain Ser-7 phosphorylation is established in a mediator-dependent fashion.
    Boeing S; Rigault C; Heidemann M; Eick D; Meisterernst M
    J Biol Chem; 2010 Jan; 285(1):188-96. PubMed ID: 19901026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between the aryl hydrocarbon receptor and P-TEFb. Sequential recruitment of transcription factors and differential phosphorylation of C-terminal domain of RNA polymerase II at cyp1a1 promoter.
    Tian Y; Ke S; Chen M; Sheng T
    J Biol Chem; 2003 Nov; 278(45):44041-8. PubMed ID: 12917420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases.
    Rickert P; Corden JL; Lees E
    Oncogene; 1999 Jan; 18(4):1093-102. PubMed ID: 10023686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of TFIIH-associated kinase activity by complex formation and its relationship with CTD phosphorylation of RNA polymerase II.
    Watanabe Y; Fujimoto H; Watanabe T; Maekawa T; Masutani C; Hanaoka F; Ohkuma Y
    Genes Cells; 2000 May; 5(5):407-23. PubMed ID: 10886368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacological targeting of CDK9 in cardiac hypertrophy.
    Krystof V; Chamrád I; Jorda R; Kohoutek J
    Med Res Rev; 2010 Jul; 30(4):646-66. PubMed ID: 19757441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.