BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 1474991)

  • 1. Transient inhibition of protein synthesis accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms.
    Bass KE; Wang CC
    Mol Biochem Parasitol; 1992 Nov; 56(1):129-40. PubMed ID: 1474991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of a culture-adapted mutant bloodstream form of Trypanosoma brucei into the procyclic form results in growth arrest of the cells.
    Mutomba MC; Wang CC
    Mol Biochem Parasitol; 1995 Jun; 72(1-2):215-25. PubMed ID: 8538691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The in vitro differentiation of pleomorphic Trypanosoma brucei from bloodstream into procyclic form requires neither intermediary nor short-stumpy stage.
    Bass KE; Wang CC
    Mol Biochem Parasitol; 1991 Feb; 44(2):261-70. PubMed ID: 2052026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture.
    Reuner B; Vassella E; Yutzy B; Boshart M
    Mol Biochem Parasitol; 1997 Dec; 90(1):269-80. PubMed ID: 9497048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypanosoma brucei: in vitro slender-to-stumpy differentiation of culture-adapted, monomorphic bloodstream forms.
    Breidbach T; Ngazoa E; Steverding D
    Exp Parasitol; 2002 Aug; 101(4):223-30. PubMed ID: 12594963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei.
    Vassella E; Krämer R; Turner CM; Wankell M; Modes C; van den Bogaard M; Boshart M
    Mol Microbiol; 2001 Jul; 41(1):33-46. PubMed ID: 11454198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of eIF2α on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation.
    Avila CC; Peacock L; Machado FC; Gibson W; Schenkman S; Carrington M; Castilho BA
    Mol Biochem Parasitol; 2016; 205(1-2):16-21. PubMed ID: 26996431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of monomorphic Trypanosoma brucei bloodstream form trypomastigotes into procyclic forms at 37 degrees C by removing glucose from the culture medium.
    Milne KG; Prescott AR; Ferguson MA
    Mol Biochem Parasitol; 1998 Jul; 94(1):99-112. PubMed ID: 9719513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture.
    Vassella E; Boshart M
    Mol Biochem Parasitol; 1996 Nov; 82(1):91-105. PubMed ID: 8943153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of the growth and differentiation in vivo and in vitro-of bloodstream-form Trypanosoma brucei strain TREU 927.
    van Deursen FJ; Shahi SK; Turner CM; Hartmann C; Guerra-Giraldez C; Matthews KR; Clayton CE
    Mol Biochem Parasitol; 2001 Feb; 112(2):163-71. PubMed ID: 11223123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei.
    Engstler M; Boshart M
    Genes Dev; 2004 Nov; 18(22):2798-811. PubMed ID: 15545633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of proteolysis during differentiation of Trypanosoma brucei from the bloodstream to the procyclic form.
    Mutomba MC; Wang CC
    Mol Biochem Parasitol; 1998 May; 93(1):11-22. PubMed ID: 9662024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of procyclic-form Trypanosoma brucei to the bloodstream form by transient expression of RBP10.
    Mugo E; Egler F; Clayton C
    Mol Biochem Parasitol; 2017 Sep; 216():49-51. PubMed ID: 28651963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mild acid stress as a differentiation trigger in Trypanosoma brucei.
    Rolin S; Hancocq-Quertier J; Paturiaux-Hanocq F; Nolan DP; Pays E
    Mol Biochem Parasitol; 1998 Jun; 93(2):251-62. PubMed ID: 9662709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei.
    Knüsel S; Roditi I
    Mol Biochem Parasitol; 2013 Oct; 191(2):66-74. PubMed ID: 24076427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous differentiation of Trypanosoma brucei from bloodstream to procyclic forms in vitro.
    Ziegelbauer K; Quinten M; Schwarz H; Pearson TW; Overath P
    Eur J Biochem; 1990 Sep; 192(2):373-8. PubMed ID: 1698624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trypanosoma brucei brucei and T. b. gambiense: stumpy bloodstream forms express more CB1 epitope in endosomes and lysosomes than slender forms.
    Brickman MJ; Balber AE
    J Eukaryot Microbiol; 1994; 41(6):533-6. PubMed ID: 7532512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro.
    Rojas F; Cayla M; Matthews KR
    PLoS Negl Trop Dis; 2021 Apr; 15(4):e0009284. PubMed ID: 33909626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of the oligomycin-sensitive ATPase in bloodstream forms of Trypanosoma brucei brucei.
    Bienen EJ; Shaw MK
    Mol Biochem Parasitol; 1991 Sep; 48(1):59-66. PubMed ID: 1838138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture.
    Hamm B; Schindler A; Mecke D; Duszenko M
    Mol Biochem Parasitol; 1990 Apr; 40(1):13-22. PubMed ID: 2348830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.