These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14750661)

  • 1. Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies.
    Landman U; Luedtke WD
    Faraday Discuss; 2004; 125():1-22; discussion 99-116. PubMed ID: 14750661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights into the thermal stability of gold superlattices.
    Liu X; Lu P; Zhai H; Xie F
    Nanotechnology; 2019 Nov; 31(8):085704. PubMed ID: 31689690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters.
    Aikens CM
    Acc Chem Res; 2018 Dec; 51(12):3065-3073. PubMed ID: 30444598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle superlattice crystallization probed in situ.
    Abécassis B; Testard F; Spalla O
    Phys Rev Lett; 2008 Mar; 100(11):115504. PubMed ID: 18517795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the size and charge of gold nanoclusters on complexation with siRNA: a molecular dynamics simulation study.
    Mudedla SK; Azhagiya Singam ER; Balamurugan K; Subramanian V
    Phys Chem Chem Phys; 2015 Nov; 17(45):30307-17. PubMed ID: 26508176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface mediated assembly of small, metastable gold nanoclusters.
    Pettibone JM; Osborn WA; Rykaczewski K; Talin AA; Bonevich JE; Hudgens JW; Allendorf MD
    Nanoscale; 2013 Jul; 5(14):6558-66. PubMed ID: 23759958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements.
    Lee J; Nakouzi E; Song M; Wang B; Chun J; Li D
    ACS Nano; 2018 Dec; 12(12):12778-12787. PubMed ID: 30422615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaching Materials with Atomic Precision Using Supramolecular Cluster Assemblies.
    Chakraborty P; Nag A; Chakraborty A; Pradeep T
    Acc Chem Res; 2019 Jan; 52(1):2-11. PubMed ID: 30507167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-induced phase transitions of the ordered superlattice assembly of Au nanoclusters.
    Chaki NK; Vijayamohanan KP
    J Phys Chem B; 2005 Feb; 109(7):2552-8. PubMed ID: 16851256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Superlattices of Bi Nanoclusters Formed on a Au(111) Surface Using Porous Supramolecular Templates.
    Zhang R; Lyu G; Chen C; Lin T; Liu J; Liu PN; Lin N
    ACS Nano; 2015 Aug; 9(8):8547-53. PubMed ID: 26252867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral assemblies of pinwheel superlattices on substrates.
    Zhou S; Li J; Lu J; Liu H; Kim JY; Kim A; Yao L; Liu C; Qian C; Hood ZD; Lin X; Chen W; Gage TE; Arslan I; Travesset A; Sun K; Kotov NA; Chen Q
    Nature; 2022 Dec; 612(7939):259-265. PubMed ID: 36443603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A double helical 4H assembly pattern with secondary hierarchical complexity in an Ag
    Chen T; Yang S; Li Q; Song Y; Li G; Chai J; Zhu M
    Nanoscale Horiz; 2021 Oct; 6(11):913-917. PubMed ID: 34486633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescent CdSe Superstructures: A Nanocluster Superlattice and a Nanoporous Crystal.
    Levchenko TI; Kübel C; Khalili Najafabadi B; Boyle PD; Cadogan C; Goncharova LV; Garreau A; Lagugné-Labarthet F; Huang Y; Corrigan JF
    J Am Chem Soc; 2017 Jan; 139(3):1129-1144. PubMed ID: 28084731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.
    Wang BC; Chou YM; Deng JP; Dung YT
    J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster Superlattice Membranes.
    Hartl T; Will M; Čapeta D; Singh R; Scheinecker D; Boix de la Cruz V; Dellmann S; Lacovig P; Lizzit S; Senkovskiy BV; Grüneis A; Kralj M; Knudsen J; Kotakoski J; Michely T; Bampoulis P
    ACS Nano; 2020 Oct; 14(10):13629-13637. PubMed ID: 32910634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.