These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14750671)

  • 21. Electron transport in bipyridinium films.
    Raymo FM; Alvarado RJ
    Chem Rec; 2004; 4(3):204-18. PubMed ID: 15293340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-dependent behaviors of electroactive myoglobin loaded into layer-by-layer films assembled with alginate and hydroxyethyl cellulose ethoxylate.
    Hu Y; Hu N
    J Phys Chem B; 2008 Aug; 112(31):9523-31. PubMed ID: 18616316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model for the Heyrovsky reaction as the second step in hydrogen evolution.
    Santos E; Hindelang P; Quaino P; Schmickler W
    Phys Chem Chem Phys; 2011 Apr; 13(15):6992-7000. PubMed ID: 21403955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonequilibrium solvation energy by means of constrained equilibrium thermodynamics and its application to self-exchange electron transfer reactions.
    Li XY; Wang QD; Wang JB; Ma JY; Fu KX; He FC
    Phys Chem Chem Phys; 2010 Feb; 12(6):1341-50. PubMed ID: 20119612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calculation of Electrochemical Reorganization Energies for Redox Molecules at Self-Assembled Monolayer Modified Electrodes.
    Ghosh S; Hammes-Schiffer S
    J Phys Chem Lett; 2015 Jan; 6(1):1-5. PubMed ID: 26263083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reorganization energy of electron transfer processes in ionic fluids: a molecular Debye-Hückel approach.
    Xiao T; Song X
    J Chem Phys; 2013 Mar; 138(11):114105. PubMed ID: 23534625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Medium and interfacial effects in the multistep reduction of binuclear complexes with robson-type ligand.
    Nazmutdinov RR; Roznyatovskaya NV; Glukhov DV; Manyurov I; Mazin VM; Tsirlina GA; Probst M
    Inorg Chem; 2008 Aug; 47(15):6659-73. PubMed ID: 18582034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A framework for modeling electroactive microbial biofilms performing direct electron transfer.
    Korth B; Rosa LF; Harnisch F; Picioreanu C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Donor/Acceptor adsorbates on the surface of metal oxide nanoporous films: a spectroscopic probe for different electron transfer pathways.
    Matylitsky VV; Dworak L; Wachtveitl J
    Chemphyschem; 2010 Jun; 11(9):2027-35. PubMed ID: 20486146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relating Franck-Condon blockade to redox chemistry in the single-particle picture.
    Bevan KH; Roy-Gobeil A; Miyahara Y; Grutter P
    J Chem Phys; 2018 Sep; 149(10):104109. PubMed ID: 30219021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron delocalization and electrostatic repulsion at the origin of the strong spin coupling in mixed-valence keggin polyoxometalates: ab initio calculations of the one- and two-electron processes.
    Suaud N; Gaita-Ariño A; Clemente-Juan JM; Coronado E
    Chemistry; 2004 Aug; 10(16):4041-53. PubMed ID: 15316996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the role of specific acidic amino acid residues in electron transfer between the flavodoxin and cytochrome c3 from Desulfovibrio vulgaris.
    Feng Y; Swenson RP
    Biochemistry; 1997 Nov; 36(44):13617-28. PubMed ID: 9354631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct and indirect electron transfer between electrodes and redox proteins.
    Frew JE; Hill HA
    Eur J Biochem; 1988 Mar; 172(2):261-9. PubMed ID: 3280307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct electron transfer between hemoglobin and pyrolytic graphite electrodes enhanced by Fe(3)O(4) nanoparticles in their layer-by-layer self-assembly films.
    Cao D; Hu N
    Biophys Chem; 2006 Jun; 121(3):209-17. PubMed ID: 16494993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic structure contributions to electron-transfer reactivity in iron-sulfur active sites: 3. Kinetics of electron transfer.
    Kennepohl P; Solomon EI
    Inorg Chem; 2003 Feb; 42(3):696-708. PubMed ID: 12562183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extended spin-boson model for nonadiabatic hydrogen tunneling in the condensed phase.
    Ohta Y; Soudackov AV; Hammes-Schiffer S
    J Chem Phys; 2006 Oct; 125(14):144522. PubMed ID: 17042624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes.
    Martins MV; Pereira AR; Luz RA; Iost RM; Crespilho FN
    Phys Chem Chem Phys; 2014 Sep; 16(33):17426-36. PubMed ID: 24676540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoparticle-mediated electron transfer across ultrathin self-assembled films.
    Zhao J; Bradbury CR; Huclova S; Potapova I; Carrara M; Fermín DJ
    J Phys Chem B; 2005 Dec; 109(48):22985-94. PubMed ID: 16853995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrafast photoinduced electron transfer at electrodes: the general case of a heterogeneous electron-transfer reaction.
    Gundlach L; Willig F
    Chemphyschem; 2012 Aug; 13(12):2877-81. PubMed ID: 22532449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.