These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14750718)

  • 1. Slow desorption mechanisms of volatile organic chemical mixtures in soil and sediment micropores.
    Li J; Werth CJ
    Environ Sci Technol; 2004 Jan; 38(2):440-8. PubMed ID: 14750718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating competitive sorption mechanisms of volatile organic compounds in soils and sediments using polymers and zeolites.
    Li J; Werth CJ
    Environ Sci Technol; 2001 Feb; 35(3):568-74. PubMed ID: 11351730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.
    Cheng H; Reinhard M
    Environ Sci Technol; 2006 Jun; 40(11):3595-602. PubMed ID: 16786699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals.
    Cheng H; Reinhard M
    Environ Sci Technol; 2006 Dec; 40(24):7694-701. PubMed ID: 17256515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling sorption isotherms of volatile organic chemical mixtures in model and natural solids.
    Li J; Werth CJ
    Environ Toxicol Chem; 2002 Jul; 21(7):1377-83. PubMed ID: 12109736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.
    Cheng H; Reinhard M
    J Hazard Mater; 2010 Jul; 179(1-3):596-603. PubMed ID: 20388581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of chlorinated solvents and degradation products on natural clayey tills.
    Lu C; Bjerg PL; Zhang F; Broholm MM
    Chemosphere; 2011 Jun; 83(11):1467-74. PubMed ID: 21459403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the effects of concentration history on the slow desorption of trichloroethene from a soil at 100% relative humidity.
    Werth CJ; Hansen KM
    J Contam Hydrol; 2002 Feb; 54(3-4):307-27. PubMed ID: 11900330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of PCE and TCE disappearance in heated volatile organic analysis vials and flame-sealed ampules.
    Costanza J; Pennell KD
    Chemosphere; 2008 Feb; 70(11):2060-7. PubMed ID: 17950414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of mini-sprinklers to strip trichloroethylene and tetrachloroethylene from contaminated ground water.
    Berisford YC; Bush PB; Blake JI; Bayer CL
    J Environ Qual; 2003; 32(3):801-15. PubMed ID: 12809281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic signatures of VOC physisorption on microporous solids. Application for trichloroethylene and tetrachloroethylene adsorption on MFI zeolites.
    Bertrand O; Weber G; Maure S; Bernardet V; Bellat JP; Paulin C
    J Phys Chem B; 2005 Jul; 109(27):13312-21. PubMed ID: 16852661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Environ Sci Technol; 2004 May; 38(10):2879-84. PubMed ID: 15212263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate of 2,2-dichloropropane transformation in mineral micropores: implications of sorptive preservation for fate and transport of organic contaminants in the subsurface.
    Cheng H; Reinhard M
    Environ Sci Technol; 2008 Apr; 42(8):2879-85. PubMed ID: 18497138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.
    Kret E; Kiecak A; Malina G; Nijenhuis I; Postawa A
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9877-88. PubMed ID: 25647491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.
    Wang J; Farrell J
    Environ Sci Technol; 2003 Sep; 37(17):3891-6. PubMed ID: 12967110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and influencing factors of tetrachloroethylene sorption-desorption on soil and its components.
    Qiu Z; Yang W; He L; Zhao Z; Lu S; Sui Q
    Chemosphere; 2016 Feb; 144():895-901. PubMed ID: 26421630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative importance of gas-phase diffusive and advective tichloroethene (TCE) fluxes in the unsaturated zone under natural conditions.
    Choi JW; Tillman FD; Smith JA
    Environ Sci Technol; 2002 Jul; 36(14):3157-64. PubMed ID: 12141498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of microchip for rapid pretreatment of trichloroethylene and tetrachloroethylene volatilized from polluted soil.
    Masaki H; Umaba Y; Hoshi S; Korenaga T
    Environ Sci; 2007; 14(1):1-8. PubMed ID: 17450115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling trichloroethylene adsorption by activated carbon preloaded with natural dissolved organic matter using a modified IAST approach.
    Wigton A; Kilduff JE
    Environ Sci Technol; 2004 Nov; 38(22):5825-33. PubMed ID: 15573579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.