These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14750744)

  • 1. Methylmercury formation in a wetland mesocosm amended with sulfate.
    Harmon SM; King JK; Gladden JB; Chandler GT; Newman LA
    Environ Sci Technol; 2004 Jan; 38(2):650-6. PubMed ID: 14750744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury body burdens in Gambusia holbrooki and Erimyzon sucetta in a wetland mesocosm amended with sulfate.
    Harmon SM; King JK; Gladden JB; Chandler GT; Newman LA
    Chemosphere; 2005 Apr; 59(2):227-33. PubMed ID: 15722094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate addition increases methylmercury production in an experimental wetland.
    Jeremiason JD; Engstrom DR; Swain EB; Nater EA; Johnson BM; Almendinger JE; Monson BA; Kolka RK
    Environ Sci Technol; 2006 Jun; 40(12):3800-6. PubMed ID: 16830545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms.
    King JK; Harmon SM; Fu TT; Gladden JB
    Chemosphere; 2002 Feb; 46(6):859-70. PubMed ID: 11922066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America.
    Hoggarth CG; Hall BD; Mitchell CP
    Environ Pollut; 2015 Oct; 205():269-77. PubMed ID: 26099458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using sulfate-amended sediment slurry batch reactors to evaluate mercury methylation.
    Harmon SM; King JK; Gladden JB; Newman LA
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):326-31. PubMed ID: 17384981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sediment and porewater profiles and fluxes of mercury and methylmercury in a small seepage lake in northern Minnesota.
    Hines NA; Brezonik PL; Engstrom DR
    Environ Sci Technol; 2004 Dec; 38(24):6610-7. PubMed ID: 15669319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors that influence methylmercury flux rates from wetland sediments.
    Holmes J; Lean D
    Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of aquaculture on mercury distribution, changing speciation, and bioaccumulation in a reservoir ecosystem.
    Liang P; Feng X; You Q; Gao X; Xu J; Wong M; Christie P; Wu SC
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25923-25932. PubMed ID: 28940142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region.
    Oswald CJ; Carey SK
    Environ Pollut; 2016 Jun; 213():628-637. PubMed ID: 27017139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total mercury and methylmercury in freshwater and salt marsh soils of the Mississippi river deltaic plain.
    Kongchum M; Devai I; DeLaune RD; Jugsujinda A
    Chemosphere; 2006 May; 63(8):1300-3. PubMed ID: 16325884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sulfate-reducing bacteria on methylmercury at the sediment-water interface.
    Zeng L; Luo G; He T; Guo Y; Qian X
    J Environ Sci (China); 2016 Aug; 46():214-9. PubMed ID: 27521953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury methylation in stormwater retention ponds at different stages in the management lifecycle.
    Strickman RJ; Mitchell CPJ
    Environ Sci Process Impacts; 2018 Apr; 20(4):595-606. PubMed ID: 29376168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury dynamics of a temperate forested wetland.
    Galloway ME; Branfireun BA
    Sci Total Environ; 2004 Jun; 325(1-3):239-54. PubMed ID: 15144792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal variation of total mercury and methylmercury in lacustrine wetland in Korea.
    Kim MK; Lee YM; Zoh KD
    Environ Sci Pollut Res Int; 2015 May; 22(9):6578-89. PubMed ID: 25758419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.
    Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J
    Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-level fluctuations influence sediment porewater chemistry and methylmercury production in a flood-control reservoir.
    Eckley CS; Luxton TP; Goetz J; McKernan J
    Environ Pollut; 2017 Mar; 222():32-41. PubMed ID: 28104341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfate threshold target to control methylmercury levels in wetland ecosystems.
    Corrales J; Naja GM; Dziuba C; Rivero RG; Orem W
    Sci Total Environ; 2011 May; 409(11):2156-62. PubMed ID: 21439608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton.
    Klaus JE; Hammerschmidt CR; Costello DM; Burton GA
    Environ Toxicol Chem; 2016 Jul; 35(7):1759-65. PubMed ID: 26636557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota.
    Jonsson S; Skyllberg U; Nilsson MB; Lundberg E; Andersson A; Björn E
    Nat Commun; 2014 Aug; 5():4624. PubMed ID: 25140406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.