These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 14750744)
21. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Boyd ES; Yu RQ; Barkay T; Hamilton TL; Baxter BK; Naftz DL; Marvin-DiPasquale M Sci Total Environ; 2017 Mar; 581-582():495-506. PubMed ID: 28057343 [TBL] [Abstract][Full Text] [Related]
22. Total and methyl mercury in the water, sediment, and fishes of Vembanad, a tropical backwater system in India. Ramasamy EV; Jayasooryan KK; Chandran MS; Mohan M Environ Monit Assess; 2017 Mar; 189(3):130. PubMed ID: 28243932 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Gomez-Eyles JL; Yupanqui C; Beckingham B; Riedel G; Gilmour C; Ghosh U Environ Sci Technol; 2013 Dec; 47(23):13721-9. PubMed ID: 24168448 [TBL] [Abstract][Full Text] [Related]
24. Spatial variability in the speciation and bioaccumulation of mercury in an arid subtropical reservoir ecosystem. Becker JC; Groeger AW; Nowlin WH; Chumchal MM; Hahn D Environ Toxicol Chem; 2011 Oct; 30(10):2300-11. PubMed ID: 21769922 [TBL] [Abstract][Full Text] [Related]
25. Methylmercury in water, sediment, and invertebrates in created wetlands of Rouge Park, Toronto, Canada. Sinclair KA; Xie Q; Mitchell CP Environ Pollut; 2012 Dec; 171():207-15. PubMed ID: 22940274 [TBL] [Abstract][Full Text] [Related]
26. Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA. Rothenberg SE; Ambrose RF; Jay JA Environ Pollut; 2008 Jul; 154(1):32-45. PubMed ID: 18342417 [TBL] [Abstract][Full Text] [Related]
27. Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production. Windham-Myers L; Marvin-DiPasquale M; A Stricker C; Agee JL; H Kieu L; Kakouros E Sci Total Environ; 2014 Jun; 484():300-7. PubMed ID: 23809881 [TBL] [Abstract][Full Text] [Related]
28. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Bravo AG; Cosio C; Amouroux D; Zopfi J; Chevalley PA; Spangenberg JE; Ungureanu VG; Dominik J Water Res; 2014 Feb; 49():391-405. PubMed ID: 24216231 [TBL] [Abstract][Full Text] [Related]
30. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Marvin-DiPasquale M; Windham-Myers L; Agee JL; Kakouros E; Kieu le H; Fleck JA; Alpers CN; Stricker CA Sci Total Environ; 2014 Jun; 484():288-99. PubMed ID: 24188689 [TBL] [Abstract][Full Text] [Related]
31. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer. Ribeiro Guevara S; Zizek S; Repinc U; Pérez Catán S; Jaćimović R; Horvat M Anal Bioanal Chem; 2007 Mar; 387(6):2185-97. PubMed ID: 17205268 [TBL] [Abstract][Full Text] [Related]
32. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California. Domagalski JL; Alpers CN; Slotton DG; Suchanek TH; Ayers SM Sci Total Environ; 2004 Jul; 327(1-3):215-37. PubMed ID: 15172583 [TBL] [Abstract][Full Text] [Related]
33. [Role of Sulfate-Reducing Bacteria in Mercury Methylation in Soil of the Water-Level-Fluctuating Zone of the Three Gorges Reservoir Area]. Chen R; Chen H; Wang DY; Xiang YP; Shen H Huan Jing Ke Xue; 2016 Oct; 37(10):3774-3780. PubMed ID: 29964408 [TBL] [Abstract][Full Text] [Related]
34. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments. Shao D; Kang Y; Wu S; Wong MH Sci Total Environ; 2012 May; 424():331-6. PubMed ID: 22444059 [TBL] [Abstract][Full Text] [Related]
35. Manganese(iv) oxide amendments reduce methylmercury concentrations in sediment porewater. Vlassopoulos D; Kanematsu M; Henry EA; Goin J; Leven A; Glaser D; Brown SS; O'Day PA Environ Sci Process Impacts; 2018 Dec; 20(12):1746-1760. PubMed ID: 30393799 [TBL] [Abstract][Full Text] [Related]
36. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Zhang T; Kucharzyk KH; Kim B; Deshusses MA; Hsu-Kim H Environ Sci Technol; 2014 Aug; 48(16):9133-41. PubMed ID: 25007388 [TBL] [Abstract][Full Text] [Related]
37. [Microcosm Simulation Study and Methylmercury Forming Mechanism at Landscape Water of City]. Liu XH; Si YB; Guo ZW; Du CZ; Zhu CC Huan Jing Ke Xue; 2016 Apr; 37(4):1330-6. PubMed ID: 27548953 [TBL] [Abstract][Full Text] [Related]
38. Chemical characteristics of dissolved mercury in the pore water of Minamata Bay sediments. Matsuyama A; Yano S; Taninaka T; Kindaichi M; Sonoda I; Tada A; Akagi H Mar Pollut Bull; 2018 Apr; 129(2):503-511. PubMed ID: 29055562 [TBL] [Abstract][Full Text] [Related]
39. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish. Ackerman JT; Kraus TE; Fleck JA; Krabbenhoft DP; Horwath WR; Bachand SM; Herzog MP; Hartman CA; Bachand PA Environ Sci Technol; 2015 May; 49(10):6304-11. PubMed ID: 25893963 [TBL] [Abstract][Full Text] [Related]
40. Methylmercury production and distribution in aquatic systems. Ikingura JR; Akagi H Sci Total Environ; 1999 Aug; 234(1-3):109-18. PubMed ID: 10507152 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]