These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy. Dixon PB; Hahn DW Anal Chem; 2005 Jan; 77(2):631-8. PubMed ID: 15649064 [TBL] [Abstract][Full Text] [Related]
26. Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer. Fletcher PD; Haswell SJ; Zhang X Electrophoresis; 2003 Sep; 24(18):3239-45. PubMed ID: 14518051 [TBL] [Abstract][Full Text] [Related]
27. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. Pan YL; Hill SC; Coleman M Opt Express; 2012 Feb; 20(5):5325-34. PubMed ID: 22418339 [TBL] [Abstract][Full Text] [Related]
28. The influence of out-of-focus sample regions on the surface specificity of confocal Raman microscopy. Everall N Appl Spectrosc; 2008 Jun; 62(6):591-8. PubMed ID: 18559144 [TBL] [Abstract][Full Text] [Related]
29. Single beam optical trapping integrated in a confocal microscope for biological applications. Visscher K; Brakenhoff GJ Cytometry; 1991; 12(6):486-91. PubMed ID: 1764973 [TBL] [Abstract][Full Text] [Related]
30. Measuring diffusion of molecules into individual polymer particles by confocal Raman microscopy. Bridges TE; Uibel RH; Harris JM Anal Chem; 2006 Apr; 78(7):2121-9. PubMed ID: 16579589 [TBL] [Abstract][Full Text] [Related]
31. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
32. [Application of depth-analysis of confocal Raman micro-spectroscopy to chirography identification]. Lin HB; Xu XX; Wang B; Yang YY; Yu G; Zhang CZ; Li J Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jan; 25(1):51-3. PubMed ID: 15852817 [TBL] [Abstract][Full Text] [Related]
33. An integrated optofluidic platform for Raman-activated cell sorting. Lau AY; Lee LP; Chan JW Lab Chip; 2008 Jul; 8(7):1116-20. PubMed ID: 18584087 [TBL] [Abstract][Full Text] [Related]
34. Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis. Hart SJ; Terray A; Leski TA; Arnold J; Stroud R Anal Chem; 2006 May; 78(9):3221-5. PubMed ID: 16643018 [TBL] [Abstract][Full Text] [Related]
35. Correction of axial chromatic aberrations in confocal Raman microspectroscopic measurements of a single microbial spore. Lasch P; Hermelink A; Naumann D Analyst; 2009 Jun; 134(6):1162-70. PubMed ID: 19475143 [TBL] [Abstract][Full Text] [Related]
36. [Probing the mechanism and Ca-DPA concentration of individual Bacillus spores using trapping and Raman spectroscopy]. Huang X; Huang RS; Lai JZ; Xu LL; Li YQ; Li ZC; Huang SS Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2151-6. PubMed ID: 20939327 [TBL] [Abstract][Full Text] [Related]
37. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341 [TBL] [Abstract][Full Text] [Related]