BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 14750862)

  • 1. Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry.
    Sharp JS; Becker JM; Hettich RL
    Anal Chem; 2004 Feb; 76(3):672-83. PubMed ID: 14750862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry.
    Kiselar JG; Maleknia SD; Sullivan M; Downard KM; Chance MR
    Int J Radiat Biol; 2002 Feb; 78(2):101-14. PubMed ID: 11779360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry.
    Maleknia SD; Kiselar JG; Downard KM
    Rapid Commun Mass Spectrom; 2002; 16(1):53-61. PubMed ID: 11754247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosecond laser-induced photochemical oxidation method for protein surface mapping with mass spectrometry.
    Aye TT; Low TY; Sze SK
    Anal Chem; 2005 Sep; 77(18):5814-22. PubMed ID: 16159110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiolytic modification of basic amino acid residues in peptides: probes for examining protein-protein interactions.
    Xu G; Takamoto K; Chance MR
    Anal Chem; 2003 Dec; 75(24):6995-7007. PubMed ID: 14670063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry.
    Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF
    J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel biomarkers of protein oxidation sites and degrees using horse cytochrome c as the target by mass spectrometry.
    Zong W; Liu R; Guo C; Sun F
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1581-6. PubMed ID: 21377407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical surface mapping of C14S-Sml1p for constrained computational modeling of protein structure.
    Sharp JS; Guo JT; Uchiki T; Xu Y; Dealwis C; Hettich RL
    Anal Biochem; 2005 May; 340(2):201-12. PubMed ID: 15840492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary reactions and strategies to improve quantitative protein footprinting.
    Xu G; Kiselar J; He Q; Chance MR
    Anal Chem; 2005 May; 77(10):3029-37. PubMed ID: 15889890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyl radical oxidation of cytochrome c by aerobic radiolysis.
    Nukuna BN; Sun G; Anderson VE
    Free Radic Biol Med; 2004 Oct; 37(8):1203-13. PubMed ID: 15451060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometry-based thermal shift assay for protein-ligand binding analysis.
    West GM; Thompson JW; Soderblom EJ; Dubois LG; Dearmond PD; Moseley MA; Fitzgerald MC
    Anal Chem; 2010 Jul; 82(13):5573-81. PubMed ID: 20527820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospray-assisted modification of proteins: a radical probe of protein structure.
    Maleknia SD; Chance MR; Downard KM
    Rapid Commun Mass Spectrom; 1999; 13(23):2352-8. PubMed ID: 10567934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations and oxidation rates of methionine residues of granulocyte colony-stimulating factor at different pH values.
    Chu JW; Yin J; Wang DI; Trout BL
    Biochemistry; 2004 Feb; 43(4):1019-29. PubMed ID: 14744147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometry in demonstrating the site-specific nitration of hen egg white lysozyme by an improved electrochemical method.
    Matters D; Cooper HJ; McDonnell L; Iniesta J; Heptinstall J; Derrick P; Walton D; Peterson I
    Anal Biochem; 2006 Sep; 356(2):171-81. PubMed ID: 16899211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PROXIMO--a new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS).
    Gerega SK; Downard KM
    Bioinformatics; 2006 Jul; 22(14):1702-9. PubMed ID: 16679333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometry combined with oxidative labeling for exploring protein structure and folding.
    Konermann L; Stocks BB; Pan Y; Tong X
    Mass Spectrom Rev; 2010; 29(4):651-67. PubMed ID: 19672951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide.
    Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z
    Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromogenic chemical probe for protein structural characterization via ultraviolet photodissociation mass spectrometry.
    O'Brien JP; Pruet JM; Brodbelt JS
    Anal Chem; 2013 Aug; 85(15):7391-7. PubMed ID: 23855605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the interaction between enzyme and inhibitor by the combination of chemical modification, electrospray ionization mass spectrometry and frit-fast atom bombardment liquid chromatography/mass spectrometry.
    Akashi S; Niitsu U; Yuji R; Ide H; Hirayama K
    Biol Mass Spectrom; 1993 Feb; 22(2):124-32. PubMed ID: 8448221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiolysis-induced oxidation of bovine alpha-crystallin.
    Finley EL; Dillon J; Crouch RK; Schey KL
    Photochem Photobiol; 1998 Jul; 68(1):9-15. PubMed ID: 9679446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.