These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 14750902)

  • 1. Repression of Smad4 transcriptional activity by SUMO modification.
    Long J; Wang G; He D; Liu F
    Biochem J; 2004 Apr; 379(Pt 1):23-9. PubMed ID: 14750902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4.
    Lin X; Liang M; Liang YY; Brunicardi FC; Melchior F; Feng XH
    J Biol Chem; 2003 May; 278(21):18714-9. PubMed ID: 12621041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling.
    Lee PS; Chang C; Liu D; Derynck R
    J Biol Chem; 2003 Jul; 278(30):27853-63. PubMed ID: 12740389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4.
    Chang CC; Lin DY; Fang HI; Chen RH; Shih HM
    J Biol Chem; 2005 Mar; 280(11):10164-73. PubMed ID: 15637079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4.
    Ohshima T; Shimotohno K
    J Biol Chem; 2003 Dec; 278(51):50833-42. PubMed ID: 14514699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sumoylation of internally initiated Sp3 isoforms regulates transcriptional repression via a Trichostatin A-insensitive mechanism.
    Spengler ML; Kennett SB; Moorefield KS; Simmons SO; Brattain MG; Horowitz JM
    Cell Signal; 2005 Feb; 17(2):153-66. PubMed ID: 15494207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4.
    Lin X; Liang M; Liang YY; Brunicardi FC; Feng XH
    J Biol Chem; 2003 Aug; 278(33):31043-8. PubMed ID: 12813045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubc9 promotes the stability of Smad4 and the nuclear accumulation of Smad1 in osteoblast-like Saos-2 cells.
    Shimada K; Suzuki N; Ono Y; Tanaka K; Maeno M; Ito K
    Bone; 2008 May; 42(5):886-93. PubMed ID: 18321803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIM-dependent enhancement of substrate-specific SUMOylation by a ubiquitin ligase in vitro.
    Parker JL; Ulrich HD
    Biochem J; 2014 Feb; 457(3):435-40. PubMed ID: 24224485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional activity of megakaryoblastic leukemia 1 (MKL1) is repressed by SUMO modification.
    Nakagawa K; Kuzumaki N
    Genes Cells; 2005 Aug; 10(8):835-50. PubMed ID: 16098147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription.
    Zhang Y; Feng XH; Derynck R
    Nature; 1998 Aug; 394(6696):909-13. PubMed ID: 9732876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SUMOylation modulates transcriptional repression by TRPS1.
    Kaiser FJ; Lüdecke HJ; Weger S
    Biol Chem; 2007 Apr; 388(4):381-90. PubMed ID: 17391059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation.
    Ji Z; Degerny C; Vintonenko N; Deheuninck J; Foveau B; Leroy C; Coll J; Tulasne D; Baert JL; Fafeur V
    Oncogene; 2007 Jan; 26(3):395-406. PubMed ID: 16862185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubc9 interacts with chicken ovalbumin upstream promoter-transcription factor I and represses receptor-dependent transcription.
    Kobayashi S; Shibata H; Kurihara I; Yokota K; Suda N; Saito I; Saruta T
    J Mol Endocrinol; 2004 Feb; 32(1):69-86. PubMed ID: 14765993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for SUMO modification in facilitating transcriptional repression by BKLF.
    Perdomo J; Verger A; Turner J; Crossley M
    Mol Cell Biol; 2005 Feb; 25(4):1549-59. PubMed ID: 15684403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubc9-mediated sumoylation leads to transcriptional repression of IRF-1.
    Kim EJ; Park JS; Um SJ
    Biochem Biophys Res Commun; 2008 Dec; 377(3):952-6. PubMed ID: 18955028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubc9 negatively regulates BMP-mediated osteoblastic differentiation in cultured cells.
    Yukita A; Hosoya A; Ito Y; Katagiri T; Asashima M; Nakamura H
    Bone; 2012 May; 50(5):1092-9. PubMed ID: 22366399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUMO functions in constitutive transcription and during activation of inducible genes in yeast.
    Rosonina E; Duncan SM; Manley JL
    Genes Dev; 2010 Jun; 24(12):1242-52. PubMed ID: 20504900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of SOX6 transcriptional activity by SUMO modification.
    Fernández-Lloris R; Osses N; Jaffray E; Shen LN; Vaughan OA; Girwood D; Bartrons R; Rosa JL; Hay RT; Ventura F
    FEBS Lett; 2006 Feb; 580(5):1215-21. PubMed ID: 16442531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression of Smad-dependent transforming growth factor-beta signaling by Epstein-Barr virus latent membrane protein 1 through nuclear factor-kappaB.
    Mori N; Morishita M; Tsukazaki T; Yamamoto N
    Int J Cancer; 2003 Jul; 105(5):661-8. PubMed ID: 12740915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.