BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 14751267)

  • 41. A coupled protein and probe engineering approach for selective inhibition and activity-based probe labeling of the caspases.
    Xiao J; Broz P; Puri AW; Deu E; Morell M; Monack DM; Bogyo M
    J Am Chem Soc; 2013 Jun; 135(24):9130-8. PubMed ID: 23701470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism.
    Martin SJ; Amarante-Mendes GP; Shi L; Chuang TH; Casiano CA; O'Brien GA; Fitzgerald P; Tan EM; Bokoch GM; Greenberg AH; Green DR
    EMBO J; 1996 May; 15(10):2407-16. PubMed ID: 8665848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analytical application of the co-fluorescence effect in detection of europium, terbium, samarium and dysprosium with time-resolved fluorimetry.
    Xu YY; Hemmilä IA
    Talanta; 1992 Jul; 39(7):759-63. PubMed ID: 18965447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles.
    Julien O; Zhuang M; Wiita AP; O'Donoghue AJ; Knudsen GM; Craik CS; Wells JA
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E2001-10. PubMed ID: 27006500
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inflammatory caspase substrate specificities.
    Exconde PM; Bourne CM; Kulkarni M; Discher BM; Taabazuing CY
    mBio; 2024 Jun; ():e0297523. PubMed ID: 38837391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 131I-labeled peptides as caspase substrates for apoptosis imaging.
    Bauer C; Bauder-Wuest U; Mier W; Haberkorn U; Eisenhut M
    J Nucl Med; 2005 Jun; 46(6):1066-74. PubMed ID: 15937321
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of recombinant caspase specificity by competitive substrates.
    Benkova B; Lozanov V; Ivanov IP; Mitev V
    Anal Biochem; 2009 Nov; 394(1):68-74. PubMed ID: 19595985
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteome-wide identification of family member-specific natural substrate repertoire of caspases.
    Ju W; Valencia CA; Pang H; Ke Y; Gao W; Dong B; Liu R
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14294-9. PubMed ID: 17728405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity.
    Pereira NA; Song Z
    Biochem Biophys Res Commun; 2008 Dec; 377(3):873-7. PubMed ID: 18976637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assay development and high-throughput screening of caspases in microfluidic format.
    Wu G; Irvine J; Luft C; Pressley D; Hodge CN; Janzen B
    Comb Chem High Throughput Screen; 2003 Jun; 6(4):303-12. PubMed ID: 12769673
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design, synthesis, and evaluation of aza-peptide epoxides as selective and potent inhibitors of caspases-1, -3, -6, and -8.
    James KE; Asgian JL; Li ZZ; Ekici OD; Rubin JR; Mikolajczyk J; Salvesen GS; Powers JC
    J Med Chem; 2004 Mar; 47(6):1553-74. PubMed ID: 14998341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Peptidyl-Resin Substrates as a Tool in the Analysis of Caspase Activity.
    Bąchor R
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection of caspase activation in situ by fluorochrome-labeled caspase inhibitors.
    Amstad PA; Yu G; Johnson GL; Lee BW; Dhawan S; Phelps DJ
    Biotechniques; 2001 Sep; 31(3):608-10, 612, 614, passim. PubMed ID: 11570504
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using Synthetic Peptide Substrates to Measure Drosophila Caspase Activity.
    Denton D; Kumar S
    Cold Spring Harb Protoc; 2015 Jul; 2015(7):671-3. PubMed ID: 26134908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorometric and colorimetric detection of caspase activity associated with apoptosis.
    Gurtu V; Kain SR; Zhang G
    Anal Biochem; 1997 Aug; 251(1):98-102. PubMed ID: 9300088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Convenient synthesis of maleimido-derivatized lanthanide(III) chelates and their use in mercapto group conjugation.
    Hovinen J
    Bioconjug Chem; 2007; 18(2):597-600. PubMed ID: 17341106
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resonance energy transfer from lanthanide chelates to overlapping and nonoverlapping fluorescent protein acceptors.
    Vuojola J; Lamminmäki U; Soukka T
    Anal Chem; 2009 Jun; 81(12):5033-8. PubMed ID: 19438245
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assaying caspase activity in vitro.
    McStay GP; Green DR
    Cold Spring Harb Protoc; 2014 Jul; 2014(7):774-7. PubMed ID: 24987140
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic properties of the caspases.
    Stennicke HR; Salvesen GS
    Cell Death Differ; 1999 Nov; 6(11):1054-9. PubMed ID: 10578173
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of NF-kappa B activity in human T lymphocytes induces caspase-dependent apoptosis without detectable activation of caspase-1 and -3.
    Kolenko V; Bloom T; Rayman P; Bukowski R; Hsi E; Finke J
    J Immunol; 1999 Jul; 163(2):590-8. PubMed ID: 10395645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.