These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 14751733)
1. Processing and properties of porous poly(L-lactide)/bioactive glass composites. Zhang K; Wang Y; Hillmyer MA; Francis LF Biomaterials; 2004 Jun; 25(13):2489-500. PubMed ID: 14751733 [TBL] [Abstract][Full Text] [Related]
2. Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces. Zhang K; Ma Y; Francis LF J Biomed Mater Res; 2002 Sep; 61(4):551-63. PubMed ID: 12115445 [TBL] [Abstract][Full Text] [Related]
3. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672 [TBL] [Abstract][Full Text] [Related]
4. Characterization of bioactive glass-reinforced HAP-polymer composites. Greish YE; Brown PW J Biomed Mater Res; 2000 Dec; 52(4):687-94. PubMed ID: 11033551 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of biodegradable poly(D,L-lactide) and surface-modified bioactive glass composites as bone repair materials. Zhang du J; Zhang LF; Xiong ZC; Bai W; Xiong CD J Mater Sci Mater Med; 2009 Oct; 20(10):1971-8. PubMed ID: 19449200 [TBL] [Abstract][Full Text] [Related]
6. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Shikinami Y; Okuno M Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712 [TBL] [Abstract][Full Text] [Related]
7. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity. Niemelä T; Niiranen H; Kellomäki M; Törmälä P Acta Biomater; 2005 Mar; 1(2):235-42. PubMed ID: 16701800 [TBL] [Abstract][Full Text] [Related]
8. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
9. Study of engineered low-modulus Mg/PLLA composites as potential orthopaedic implants: An in vitro and in vivo study. Yu X; Huang W; Zhao D; Yang K; Tan L; Zhang X; Li J; Zhang M; Zhang S; Liu T; Wu B; Qu M; Duan R; Yuan Y Colloids Surf B Biointerfaces; 2019 Feb; 174():280-290. PubMed ID: 30469049 [TBL] [Abstract][Full Text] [Related]
10. Preparation and properties of poly(L-lactide)/hydroxyapatite composites. Kesenci K; Fambri L; Migliaresi C; Pişkin E J Biomater Sci Polym Ed; 2000; 11(6):617-32. PubMed ID: 10981677 [TBL] [Abstract][Full Text] [Related]
11. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites. Yamadi S; Kobayashi S J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650 [TBL] [Abstract][Full Text] [Related]
12. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass. Li H; Du R; Chang J J Biomater Appl; 2005 Oct; 20(2):137-55. PubMed ID: 16183674 [TBL] [Abstract][Full Text] [Related]
13. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Misra SK; Mohn D; Brunner TJ; Stark WJ; Philip SE; Roy I; Salih V; Knowles JC; Boccaccini AR Biomaterials; 2008 Apr; 29(12):1750-61. PubMed ID: 18255139 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass. Misra SK; Nazhat SN; Valappil SP; Moshrefi-Torbati M; Wood RJ; Roy I; Boccaccini AR Biomacromolecules; 2007 Jul; 8(7):2112-9. PubMed ID: 17530893 [TBL] [Abstract][Full Text] [Related]
16. In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Ji L; Wang W; Jin D; Zhou S; Song X Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():1-9. PubMed ID: 25491953 [TBL] [Abstract][Full Text] [Related]
17. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(ε-caprolactone) polymer for bone tissue regeneration. Lei B; Shin KH; Noh DY; Koh YH; Choi WY; Kim HE J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):967-75. PubMed ID: 22279025 [TBL] [Abstract][Full Text] [Related]
18. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation. Niemelä T; Niiranen H; Kellomäki M Acta Biomater; 2008 Jan; 4(1):156-64. PubMed ID: 17692583 [TBL] [Abstract][Full Text] [Related]
19. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Fernandes JS; Gentile P; Martins M; Neves NM; Miller C; Crawford A; Pires RA; Hatton P; Reis RL Acta Biomater; 2016 Oct; 44():168-77. PubMed ID: 27554018 [TBL] [Abstract][Full Text] [Related]
20. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]