These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 14751733)
21. In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly(epsilon-caprolactone-co-DL-lactide) and bioactive glass (S53P4). Jaakkola T; Rich J; Tirri T; Närhi T; Jokinen M; Seppälä J; Yli-Urpo A Biomaterials; 2004 Feb; 25(4):575-81. PubMed ID: 14607495 [TBL] [Abstract][Full Text] [Related]
22. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
23. Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations. Shah Mohammadi M; Ahmed I; Marelli B; Rudd C; Bureau MN; Nazhat SN Acta Biomater; 2010 Aug; 6(8):3157-68. PubMed ID: 20206722 [TBL] [Abstract][Full Text] [Related]
24. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering. García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204 [TBL] [Abstract][Full Text] [Related]
25. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
26. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related]
27. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites. Aguilar-Pérez FJ; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Covarrubias C; Pedram-Yazdani M J Biomater Appl; 2016 Apr; 30(9):1362-72. PubMed ID: 26767396 [TBL] [Abstract][Full Text] [Related]
28. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Sarazin P; Roy X; Favis BD Biomaterials; 2004 Dec; 25(28):5965-78. PubMed ID: 15183611 [TBL] [Abstract][Full Text] [Related]
29. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. Zhang R; Ma PX J Biomed Mater Res; 1999 Jun; 45(4):285-93. PubMed ID: 10321700 [TBL] [Abstract][Full Text] [Related]
30. Gelatin-apatite bone mimetic co-precipitates incorporated within biopolymer matrix to improve mechanical and biological properties useful for hard tissue repair. Won JE; El-Fiqi A; Jegal SH; Han CM; Lee EJ; Knowles JC; Kim HW J Biomater Appl; 2014 Apr; 28(8):1213-25. PubMed ID: 23985536 [TBL] [Abstract][Full Text] [Related]
31. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films. Gao Y; Chang J J Biomater Appl; 2009 Aug; 24(2):119-38. PubMed ID: 18801895 [TBL] [Abstract][Full Text] [Related]
32. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. Misra SK; Ansari T; Mohn D; Valappil SP; Brunner TJ; Stark WJ; Roy I; Knowles JC; Sibbons PD; Jones EV; Boccaccini AR; Salih V J R Soc Interface; 2010 Mar; 7(44):453-65. PubMed ID: 19640877 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of bioactive glass incorporated poly(caprolactone)-poly(vinyl alcohol) matrix and the effect of BMP-2 modification. Keothongkham K; Charoenphandhu N; Thongbunchoo J; Suntornsaratoon P; Krishnamra N; Tang IM; Pon-On W Mater Sci Eng C Mater Biol Appl; 2017 May; 74():47-54. PubMed ID: 28254319 [TBL] [Abstract][Full Text] [Related]
34. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Hong Z; Reis RL; Mano JF Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885 [TBL] [Abstract][Full Text] [Related]
35. Bioactivity in glass/PMMA composites used as drug delivery system. Arcos D; Ragel CV; Vallet-Regí M Biomaterials; 2001 Apr; 22(7):701-8. PubMed ID: 11246964 [TBL] [Abstract][Full Text] [Related]
37. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. Li X; Shi J; Dong X; Zhang L; Zeng H J Biomed Mater Res A; 2008 Jan; 84(1):84-91. PubMed ID: 17600329 [TBL] [Abstract][Full Text] [Related]
38. OTS-modified HA and its toughening effect on PLLA/HA porous composite. Yang C; Cheng K; Weng W; Yang C J Mater Sci Mater Med; 2009 Mar; 20(3):667-72. PubMed ID: 18941869 [TBL] [Abstract][Full Text] [Related]
39. Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone. Koleganova VA; Bernier SM; Dixon SJ; Rizkalla AS J Biomed Mater Res A; 2006 Jun; 77(3):572-9. PubMed ID: 16506172 [TBL] [Abstract][Full Text] [Related]
40. Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-co-D,L-lactide) and bioactive glass S53P4. Aho AJ; Tirri T; Kukkonen J; Strandberg N; Rich J; Seppälä J; Yli-Urpo A J Mater Sci Mater Med; 2004 Oct; 15(10):1165-73. PubMed ID: 15516880 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]