These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 14751737)
1. Formation and growth of calcium phosphate on the surface of oxidized Ti-29Nb-13Ta-4.6Zr alloy. Li SJ; Yang R; Niinomi M; Hao YL; Cui YY Biomaterials; 2004 Jun; 25(13):2525-32. PubMed ID: 14751737 [TBL] [Abstract][Full Text] [Related]
2. Bioactive surface modification of Ti-29Nb-13Ta-4.6Zr alloy through alkali solution treatments. Takematsu E; Katsumata K; Okada K; Niinomi M; Matsushita N Mater Sci Eng C Mater Biol Appl; 2016 May; 62():662-7. PubMed ID: 26952470 [TBL] [Abstract][Full Text] [Related]
3. Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application. Li SJ; Niinomi M; Akahori T; Kasuga T; Yang R; Hao YL Biomaterials; 2004 Aug; 25(17):3369-78. PubMed ID: 15020109 [TBL] [Abstract][Full Text] [Related]
4. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Niinomi M Biomaterials; 2003 Jul; 24(16):2673-83. PubMed ID: 12711513 [TBL] [Abstract][Full Text] [Related]
5. Wear transition of solid-solution-strengthened Ti-29Nb-13Ta-4.6Zr alloys by interstitial oxygen for biomedical applications. Lee YS; Niinomi M; Nakai M; Narita K; Cho K; Liu H J Mech Behav Biomed Mater; 2015 Nov; 51():398-408. PubMed ID: 26301568 [TBL] [Abstract][Full Text] [Related]
6. In vivo osteoconductivity of surface modified Ti-29Nb-13Ta-4.6Zr alloy with low dissolution of toxic trace elements. Takematsu E; Noguchi K; Kuroda K; Ikoma T; Niinomi M; Matsushita N PLoS One; 2018; 13(1):e0189967. PubMed ID: 29342150 [TBL] [Abstract][Full Text] [Related]
7. Exfoliation Resistance, Microstructure, and Oxide Formation Mechanisms of the White Oxide Layer on CP Ti and Ti-Nb-Ta-Zr Alloys. Miura-Fujiwara E; Yamada S; Mizushima K; Nishijima M; Watanabe Y; Kasuga T; Niinomi M Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772123 [TBL] [Abstract][Full Text] [Related]
8. Bioactive calcium phosphate invert glass-ceramic coating on beta-type Ti-29Nb-13Ta-4.6Zr alloy. Kasuga T; Nogami M; Niinomi M; Hattori T Biomaterials; 2003 Jan; 24(2):283-90. PubMed ID: 12419629 [TBL] [Abstract][Full Text] [Related]
9. Quaternary Ti-20Nb-10Zr-5Ta alloy during immersion in simulated physiological solutions: formation of layers, dissolution and biocompatibility. Milošev I; Hmeljak J; Žerjav G; Cör A; Calderon Moreno JM; Popa M J Mater Sci Mater Med; 2014 Apr; 25(4):1099-114. PubMed ID: 24452270 [TBL] [Abstract][Full Text] [Related]
10. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications. Liu H; Niinomi M; Nakai M; Hieda J; Cho K J Mech Behav Biomed Mater; 2014 Jun; 34():66-74. PubMed ID: 24561725 [TBL] [Abstract][Full Text] [Related]
11. Effect of spatial design and thermal oxidation on apatite formation on Ti-15Zr-4Ta-4Nb alloy. Sugino A; Ohtsuki C; Tsuru K; Hayakawa S; Nakano T; Okazaki Y; Osaka A Acta Biomater; 2009 Jan; 5(1):298-304. PubMed ID: 18706879 [TBL] [Abstract][Full Text] [Related]
12. Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy. Hieda J; Niinomi M; Nakai M; Cho K; Mohri T; Hanawa T Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():244-51. PubMed ID: 24433910 [TBL] [Abstract][Full Text] [Related]
13. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition. Li Q; Niinomi M; Hieda J; Nakai M; Cho K Acta Biomater; 2013 Aug; 9(8):8027-35. PubMed ID: 23624220 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of adhesive strength of hydroxyapatite films on Ti-29Nb-13Ta-4.6Zr by surface morphology control. Hieda J; Niinomi M; Nakai M; Cho K; Gozawa T; Katsui H; Tu R; Goto T J Mech Behav Biomed Mater; 2013 Feb; 18():232-9. PubMed ID: 23274485 [TBL] [Abstract][Full Text] [Related]
15. Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy. Kasuga T; Mizuno T; Watanabe M; Nogami M; Niinomi M Biomaterials; 2001 Mar; 22(6):577-82. PubMed ID: 11219722 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy. Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion. Yilmazer H; Niinomi M; Nakai M; Hieda J; Todaka Y; Akahori T; Miyazaki T J Mech Behav Biomed Mater; 2012 Jun; 10():235-45. PubMed ID: 22520435 [TBL] [Abstract][Full Text] [Related]
18. Effects of micro- and nano-scale wave-like structures on fatigue strength of a beta-type titanium alloy developed as a biomaterial. Narita K; Niinomi M; Nakai M J Mech Behav Biomed Mater; 2014 Jan; 29():393-402. PubMed ID: 24184863 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity. Zuldesmi M; Waki A; Kuroda K; Okido M Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():430-435. PubMed ID: 25686969 [TBL] [Abstract][Full Text] [Related]
20. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study. Wang X; Meng X; Chu S; Xiang X; Liu Z; Zhao J; Zhou Y J Mater Sci Mater Med; 2016 Sep; 27(9):139. PubMed ID: 27534399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]