BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 14751751)

  • 1. Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase.
    Alsarra IA; Neau SH; Howard MA
    Biomaterials; 2004 Jun; 25(13):2645-55. PubMed ID: 14751751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular weight and degree of deacetylation effects on lipase-loaded chitosan bead characteristics.
    Alsarra IA; Betigeri SS; Zhang H; Evans BA; Neau SH
    Biomaterials; 2002 Sep; 23(17):3637-44. PubMed ID: 12109689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads.
    Betigeri SS; Neau SH
    Biomaterials; 2002 Sep; 23(17):3627-36. PubMed ID: 12109688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups.
    Chiou SH; Wu WT
    Biomaterials; 2004 Jan; 25(2):197-204. PubMed ID: 14585707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies of lipase from Candida rugosa: a comparative study between free and immobilized enzyme onto porous chitosan beads.
    Pereira EB; De Castro HF; De Moraes FF; Zanin GM
    Appl Biochem Biotechnol; 2001; 91-93():739-52. PubMed ID: 11963902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Esterification activity and stability of Candida rugosa lipase immobilized into chitosan.
    Pereira EB; de Castro HF; De Moraes FF; Zanin GM
    Appl Biochem Biotechnol; 2002; 98-100():977-86. PubMed ID: 12018318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrapment of laurel lipase in chitosan hydrogel beads.
    Yagar H; Balkan U
    Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):864-870. PubMed ID: 27181370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrapment of protein in chitosan-tripolyphosphate beads and its release in an in vitro digestive model.
    Yuan D; Jacquier JC; O'Riordan ED
    Food Chem; 2017 Aug; 229():495-501. PubMed ID: 28372206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wood mimetic hydrogel beads for enzyme immobilization.
    Park S; Kim SH; Won K; Choi JW; Kim YH; Kim HJ; Yang YH; Lee SH
    Carbohydr Polym; 2015 Jan; 115():223-9. PubMed ID: 25439889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimuli-sensitive hydrogel based on N-isopropylacrylamide and itaconic acid for entrapment and controlled release of Candida rugosa lipase under mild conditions.
    Milašinović N; Knežević-Jugović Z; Milosavljević N; Lučić Škorić M; Filipović J; Kalagasidis Krušić M
    Biomed Res Int; 2014; 2014():364930. PubMed ID: 24982870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pH-sensitive chitosan-tripolyphosphate hydrogel beads for controlled glipizide delivery.
    Sun P; Li P; Li YM; Wei Q; Tian LH
    J Biomed Mater Res B Appl Biomater; 2011 Apr; 97(1):175-83. PubMed ID: 21290595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of Candida rugosa lipase on magnetic chitosan beads and application in flavor esters synthesis.
    Bayramoglu G; Celikbicak O; Kilic M; Yakup Arica M
    Food Chem; 2022 Jan; 366():130699. PubMed ID: 34348221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface.
    Ye P; Jiang J; Xu ZK
    Colloids Surf B Biointerfaces; 2007 Oct; 60(1):62-7. PubMed ID: 17616362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled release of lipase from Candida rugosa loaded into hydrogels of N-isopropylacrylamide and itaconic acid.
    Milašinović N; Knežević-Jugović Z; Milosavljević N; Filipović J; Kalagasidis Krušić M
    Int J Pharm; 2012 Oct; 436(1-2):332-40. PubMed ID: 22759642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro evaluation of a chitosan-containing multiparticulate system for macromolecule delivery to the colon.
    Zhang H; Alsarra IA; Neau SH
    Int J Pharm; 2002 Jun; 239(1-2):197-205. PubMed ID: 12052705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure.
    Shu XZ; Zhu KJ
    Int J Pharm; 2002 Feb; 233(1-2):217-25. PubMed ID: 11897426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase immobilization into porous chitoxan beads: activities in aqueous and organic media and lipase localization.
    Magnin D; Dumitriu S; Magny P; Chornet E
    Biotechnol Prog; 2001; 17(4):734-7. PubMed ID: 11485436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery.
    Shu XZ; Zhu KJ
    Int J Pharm; 2000 May; 201(1):51-8. PubMed ID: 10867264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by immobilized Candida rugosa lipase.
    Okada T; Morrissey MT
    J Food Sci; 2008 Apr; 73(3):C146-50. PubMed ID: 18387091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass.
    Elias N; Chandren S; Razak FIA; Jamalis J; Widodo N; Wahab RA
    Int J Biol Macromol; 2018 Jul; 114():306-316. PubMed ID: 29578010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.