BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 1475181)

  • 1. A mechanism for deletion formation in DNA by human cell extracts: the involvement of short sequence repeats.
    Thacker J; Chalk J; Ganesh A; North P
    Nucleic Acids Res; 1992 Dec; 20(23):6183-8. PubMed ID: 1475181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair and misrepair of site-specific DNA double-strand breaks by human cell extracts.
    Ganesh A; North P; Thacker J
    Mutat Res; 1993 May; 299(3-4):251-9. PubMed ID: 7683092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of the end-joining of DNA double-strand breaks by the ataxia-telangiectasia nuclear extract.
    Tachibana A; Sasaki MS
    Biochem Biophys Res Commun; 2002 Sep; 297(2):275-81. PubMed ID: 12237114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion between direct repeats in T7 DNA stimulated by double-strand breaks.
    Kong D; Masker W
    J Bacteriol; 1994 Oct; 176(19):5904-11. PubMed ID: 7928950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-strand breaks in plasmid DNA and the induction of deletions.
    Schulte-Frohlinde D; Worm KH; Merz M
    Mutat Res; 1993 May; 299(3-4):233-50. PubMed ID: 7683091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system.
    Dar ME; Jorgensen TJ
    Nucleic Acids Res; 1995 Aug; 23(16):3224-30. PubMed ID: 7545284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rejoining of double-strand breaks in DNA by human cell extracts.
    North P; Ganesh A; Thacker J
    Nucleic Acids Res; 1990 Nov; 18(21):6205-10. PubMed ID: 2243768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of mutations caused by DNA double-strand breaks produced by a restriction enzyme in shuttle vector plasmids propagated in ataxia telangiectasia cells.
    Tatsumi-Miyajima J; Yagi T; Takebe H
    Mutat Res; 1993 Oct; 294(3):317-23. PubMed ID: 7692271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene conversion and deletion frequencies during double-strand break repair in human cells are controlled by the distance between direct repeats.
    Schildkraut E; Miller CA; Nickoloff JA
    Nucleic Acids Res; 2005; 33(5):1574-80. PubMed ID: 15767282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.
    Chuzhanova N; Abeysinghe SS; Krawczak M; Cooper DN
    Hum Mutat; 2003 Sep; 22(3):245-51. PubMed ID: 12938089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-strand breaks increase the incidence of genetic deletion associated with intermolecular recombination in bacteriophage T7.
    Yang Y; Masker W
    Mol Gen Genet; 1997 Jul; 255(3):277-84. PubMed ID: 9268018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and physiological regulation of non-homologous end-joining in mammalian cells.
    Tachibana A
    Adv Biophys; 2004; 38():21-44. PubMed ID: 15493326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for p53 in DNA end rejoining by human cell extracts.
    Bill CA; Yu Y; Miselis NR; Little JB; Nickoloff JA
    Mutat Res; 1997 Oct; 385(1):21-9. PubMed ID: 9372845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate.
    Lovett ST; Feschenko VV
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7120-4. PubMed ID: 8692955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major structural defects in the antithrombin gene in four families with type I antithrombin deficiency--partial/complete deletions and rearrangement of the antithrombin gene.
    Beauchamp NJ; Makris M; Preston FE; Peake IR; Daly ME
    Thromb Haemost; 2000 May; 83(5):715-21. PubMed ID: 10823268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining.
    Rebuzzini P; Khoriauli L; Azzalin CM; Magnani E; Mondello C; Giulotto E
    DNA Repair (Amst); 2005 May; 4(5):546-55. PubMed ID: 15811627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myotonic dystrophy CTG repeats and the associated insertion/deletion polymorphism in human and primate populations.
    Rubinsztein DC; Leggo J; Amos W; Barton DE; Ferguson-Smith MA
    Hum Mol Genet; 1994 Nov; 3(11):2031-5. PubMed ID: 7874122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison and analysis of the molecular character of breakpoints in introns of deletion hotspots of dystrophin gene].
    Sheng WL; Chen JY; Pan SY; Zhang C; Liu ZL
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2003 Oct; 20(5):376-80. PubMed ID: 14556187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA.
    Mita S; Rizzuto R; Moraes CT; Shanske S; Arnaudo E; Fabrizi GM; Koga Y; DiMauro S; Schon EA
    Nucleic Acids Res; 1990 Feb; 18(3):561-7. PubMed ID: 2308845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of an inverted repeat in a human fibrosarcoma cell.
    Kramer PR; Stringer JR; Sinden RR
    Nucleic Acids Res; 1996 Nov; 24(21):4234-41. PubMed ID: 8932378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.